ترغب بنشر مسار تعليمي؟ اضغط هنا

Do What You Know: Coupling Knowledge with Action in Discrete-Event Systems

82   0   0.0 ( 0 )
 نشر من قبل Richard Ean
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

An epistemic model for decentralized discrete-event systems with non-binary control is presented. This framework combines existing work on conditional control decisions with existing work on formal reasoning about knowledge in discrete-event systems. The novelty in the model presented is that the necessary and sufficient conditions for problem solvability encapsulate the actions that supervisors must take. This direct coupling between knowledge and action -- in a formalism that mimics natural language -- makes it easier, when the problem conditions fail, to determine how the problem requirements should be revised.

قيم البحث

اقرأ أيضاً

203 - Pranav Rajpurkar , Robin Jia , 2018
Extractive reading comprehension systems can often locate the correct answer to a question in a context document, but they also tend to make unreliable guesses on questions for which the correct answer is not stated in the context. Existing datasets either focus exclusively on answerable questions, or use automatically generated unanswerable questions that are easy to identify. To address these weaknesses, we present SQuAD 2.0, the latest version of the Stanford Question Answering Dataset (SQuAD). SQuAD 2.0 combines existing SQuAD data with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD 2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. SQuAD 2.0 is a challenging natural language understanding task for existing models: a strong neural system that gets 86% F1 on SQuAD 1.1 achieves only 66% F1 on SQuAD 2.0.
Modeling how human moves in the space is useful for policy-making in transportation, public safety, and public health. Human movements can be viewed as a dynamic process that human transits between states (eg, locations) over time. In the human world where intelligent agents like humans or vehicles with human drivers play an important role, the states of agents mostly describe human activities, and the state transition is influenced by both the human decisions and physical constraints from the real-world system (eg, agents need to spend time to move over a certain distance). Therefore, the modeling of state transition should include the modeling of the agents decision process and the physical system dynamics. In this paper, we propose ours to model state transition in human movement from a novel perspective, by learning the decision model and integrating the system dynamics. ours learns the human movement with Generative Adversarial Imitation Learning and integrates the stochastic constraints from system dynamics in the learning process. To the best of our knowledge, we are the first to learn to model the state transition of moving agents with system dynamics. In extensive experiments on real-world datasets, we demonstrate that the proposed method can generate trajectories similar to real-world ones, and outperform the state-of-the-art methods in predicting the next location and generating long-term future trajectories.
A neural network deployed in the wild may be asked to make predictions for inputs that were drawn from a different distribution than that of the training data. A plethora of work has demonstrated that it is easy to find or synthesize inputs for which a neural network is highly confident yet wrong. Generative models are widely viewed to be robust to such mistaken confidence as modeling the density of the input features can be used to detect novel, out-of-distribution inputs. In this paper we challenge this assumption. We find that the density learned by flow-based models, VAEs, and PixelCNNs cannot distinguish images of common objects such as dogs, trucks, and horses (i.e. CIFAR-10) from those of house numbers (i.e. SVHN), assigning a higher likelihood to the latter when the model is trained on the former. Moreover, we find evidence of this phenomenon when pairing several popular image data sets: FashionMNIST vs MNIST, CelebA vs SVHN, ImageNet vs CIFAR-10 / CIFAR-100 / SVHN. To investigate this curious behavior, we focus analysis on flow-based generative models in particular since they are trained and evaluated via the exact marginal likelihood. We find such behavior persists even when we restrict the flows to constant-volume transformations. These transformations admit some theoretical analysis, and we show that the difference in likelihoods can be explained by the location and variances of the data and the model curvature. Our results caution against using the density estimates from deep generative models to identify inputs similar to the training distribution until their behavior for out-of-distribution inputs is better understood.
In the present paper, we investigate the cosmographic problem using the bias-variance trade-off. We find that both the z-redshift and the $y=z/(1+z)$-redshift can present a small bias estimation. It means that the cosmography can describe the superno va data more accurately. Minimizing risk, it suggests that cosmography up to the second order is the best approximation. Forecasting the constraint from future measurements, we find that future supernova and redshift drift can significantly improve the constraint, thus having the potential to solve the cosmographic problem. We also exploit the values of cosmography on the deceleration parameter and equation of state of dark energy $w(z)$. We find that supernova cosmography cannot give stable estimations on them. However, much useful information was obtained, such as that the cosmography favors a complicated dark energy with varying $w(z)$, and the derivative $dw/dz<0$ for low redshift. The cosmography is helpful to model the dark energy.
State-of-the-art summarization systems are trained and evaluated on massive datasets scraped from the web. Despite their prevalence, we know very little about the underlying characteristics (data noise, summarization complexity, etc.) of these datase ts, and how these affect system performance and the reliability of automatic metrics like ROUGE. In this study, we manually analyze 600 samples from three popular summarization datasets. Our study is driven by a six-class typology which captures different noise types (missing facts, entities) and degrees of summarization difficulty (extractive, abstractive). We follow with a thorough analysis of 27 state-of-the-art summarization models and 5 popular metrics, and report our key insights: (1) Datasets have distinct data quality and complexity distributions, which can be traced back to their collection process. (2) The performance of models and reliability of metrics is dependent on sample complexity. (3) Faithful summaries often receive low scores because of the poor diversity of references. We release the code, annotated data and model outputs.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا