ﻻ يوجد ملخص باللغة العربية
The most advanced implementation of adaptive constraint processing with Constraint Handling Rules (CHR) allows the application of intelligent search strategies to solve Constraint Satisfaction Problems (CSP). This presentation compares an improved version of conflict-directed backjumping and two variants of dynamic backtracking with respect to chronological backtracking on some of the AIM instances which are a benchmark set of random 3-SAT problems. A CHR implementation of a Boolean constraint solver combined with these different search strategies in Java is thus being compared with a CHR implementation of the same Boolean constraint solver combined with chronological backtracking in SICStus Prolog. This comparison shows that the addition of ``intelligence to the search process may reduce the number of search steps dramatically. Furthermore, the runtime of their Java implementations is in most cases faster than the implementations of chronological backtracking. More specifically, conflict-directed backjumping is even faster than the SICStus Prolog implementation of chronological backtracking, although our Java implementation of CHR lacks the optimisations made in the SICStus Prolog system. To appear in Theory and Practice of Logic Programming (TPLP).
Constraint Handling Rules (CHR) is a declarative rule-based formalism and language. Concurrency is inherent as rules can be applied to subsets of constraints in parallel. Parallel implementations of CHR, be it in software, be it in hardware, use diff
Confluence denotes the property of a state transition system that states can be rewritten in more than one way yielding the same result. Although it is a desirable property, confluence is often too strict in practical applications because it also con
This paper presents aplib, a Java library for programming intelligent agents, featuring BDI and multi agency, but adding on top of it a novel layer of tactical programming inspired by the domain of theorem proving. Aplib is also implemented in such a
Designing a search heuristic for constraint programming that is reliable across problem domains has been an important research topic in recent years. This paper concentrates on one family of candidates: counting-based search. Such heuristics seek to
Distributed Constraint Optimization Problems (DCOPs) are a widely studied class of optimization problems in which interaction between a set of cooperative agents are modeled as a set of constraints. DCOPs are NP-hard and significant effort has been d