ﻻ يوجد ملخص باللغة العربية
We are interested in the tail behavior of the pdf of mass density within the one and $d$-dimensional Burgers/adhesion model used, e.g., to model the formation of large-scale structures in the Universe after baryon-photon decoupling. We show that large densities are localized near ``kurtoparabolic singularities residing on space-time manifolds of codimension two ($d le 2$) or higher ($d ge 3$). For smooth initial conditions, such singularities are obtained from the convex hull of the Lagrangian potential (the initial velocity potential minus a parabolic term). The singularities contribute {em hbox{universal} power-law tails} to the density pdf when the initial conditions are random. In one dimension the singularities are preshocks (nascent shocks), whereas in two and three dimensions they persist in time and correspond to boundaries of shocks; in all cases the corresponding density pdf has the exponent -7/2, originally proposed by E, Khanin, Mazel and Sinai (1997 Phys. Rev. Lett. 78, 1904) for the pdf of velocity gradients in one-dimensional forced Burgers turbulence. We also briefly consider models permitting particle crossings and thus multi-stream solutions, such as the Zeldovich approximation and the (Jeans)--Vlasov--Poisson equation with single-stream initial data: they have singularities of codimension one, yielding power-law tails with exponent -3.
The problem of one-dimensional randomly forced Burgers turbulence is considered in terms of (1+1) directed polymers. In the limit of strong turbulence (which corresponds to the zero temperature limit for the directed polymer system) using the replica
There is a misconception, widely shared amongst physicists, that the equilibrium free energy of a one-dimensional classical model with strictly finite-ranged interactions, and at non-zero temperatures, can not show any singularities as a function of
We study, both analytically and numerically, the interaction effects on the skewness of the size distribution of elements in a growth model. We incorporate two types of global interaction into the growth model, and develop analytic expressions for th
By relating the ground state of Temperley-Lieb hamiltonians to partition functions of 2D statistical mechanics systems on a half plane, and using a boundary Coulomb gas formalism, we obtain in closed form the valence bond entanglement entropy as well
We apply Density Matrix Renormalization Group methods to study the phase diagram of the quantum ANNNI model in the region of low frustration where the ferromagnetic coupling is larger than the next-nearest-neighbor antiferromagnetic one. By Finite Si