ﻻ يوجد ملخص باللغة العربية
We apply Density Matrix Renormalization Group methods to study the phase diagram of the quantum ANNNI model in the region of low frustration where the ferromagnetic coupling is larger than the next-nearest-neighbor antiferromagnetic one. By Finite Size Scaling on lattices with up to 80 sites we locate precisely the transition line from the ferromagnetic phase to a paramagnetic phase without spatial modulation. We then measure and analyze the spin-spin correlation function in order to determine the disorder transition line where a modulation appears. We give strong numerical support to the conjecture that the Peschel-Emery one-dimensional line actually coincides with the disorder line. We also show that the critical exponent governing the vanishing of the modulation parameter at the disorder transition is $beta_q = 1/2$.
Using the density-matrix renormalization-group method we study the surface critical behaviour of the magnetization in Ising strips in the subcritical region. Our results support the prediction that the surface magnetization in the two phases along th
We employ an adaptation of a strong-disorder renormalization-group technique in order to analyze the ferro-paramagnetic quantum phase transition of Ising chains with aperiodic but deterministic couplings under the action of a transverse field. In the
The two-dimensional ferromagnetic anisotropic Ashkin-Teller model is investigated through a real-space renormalization-group approach. The critical frontier, separating five distinct phases, recover all the known exacts results for the square lattice
We investigate finite lattice approximations to the Wilson Renormalization Group in models of unconstrained spins. We discuss first the properties of the Renormalization Group Transformation (RGT) that control the accuracy of this type of approximati
The ground state of a hole-doped t-t-J ladder with four legs favors a striped charge distribution. Spin excitation from the striped ground state is known to exhibit incommensurate spin excitation near q=(pi,pi) along the leg direction (qx direction).