ﻻ يوجد ملخص باللغة العربية
There is a misconception, widely shared amongst physicists, that the equilibrium free energy of a one-dimensional classical model with strictly finite-ranged interactions, and at non-zero temperatures, can not show any singularities as a function of the coupling constants. In this Letter, we discuss an instructive counter-example. We consider thin rigid linear rods of equal length $2 ell$ whose centers lie on a one-dimensional lattice, of lattice spacing $a$. The interaction between rods is a soft-core interaction, having a finite energy $U$ per overlap of rods. We show that the equilibrium free energy per rod $mathcal{F}(tfrac{ell}{a}, beta)$, at inverse temperature $beta$, has an infinite number of singularities, as a function of $tfrac{ell}{a}$.
The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-
We study the Zhang model of sandpile on a one dimensional chain of length $L$, where a random amount of energy is added at a randomly chosen site at each time step. We show that in spite of this randomness in the input energy, the probability distrib
The dynamics of entanglement in the one-dimensional spin-1/2 anisotropic XXZ model is studied using the quantum renormalization-group method. We obtain the analytical expression of the concurrence, for two different quenching methods, it is found tha
We introduce and analyze an exactly soluble one-dimensional Ising model with long range interactions which exhibits a mixed order transition (MOT), namely a phase transition in which the order parameter is discontinuous as in first order transitions
We study the moments of the partial transpose of the reduced density matrix of two intervals for the free massless Dirac fermion. By means of a direct calculation based on coherent state path integral, we find an analytic form for these moments in te