ترغب بنشر مسار تعليمي؟ اضغط هنا

The Fermi surface of Bi2Sr2CaCu2O8

120   0   0.0 ( 0 )
 نشر من قبل Mike Norman
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the Fermi surface of Bi2Sr2CaCu2O8 (Bi2212) using angle resolved photoemission (ARPES) with a momentum resolution of ~ 0.01 of the Brillouin zone. We show that, contrary to recent suggestions, the Fermi surface is a large hole barrel centered at (pi,pi), independent of the incident photon energy.



قيم البحث

اقرأ أيضاً

The stannide family of materials A3T4Sn13 (A = La,Sr,Ca, T = Ir,Rh) is interesting due to the interplay between a tunable lattice instability and phonon-mediated superconductivity with Tc ~ 5-7 K. In Sr3Ir4Sn13 a structural transition temperature T* ~ 147 K associated with this instability has been reported, which is believed to result from a superlattice distortion of the high temperature phase on cooling. Here we report the first experimental study of the electronic structure of a member of this material family - Sr3Ir4Sn13 through measurements of quantum oscillations and comparison with density functional theory calculations. Our measurements reveal good agreement with theory using the lattice parameters consistent with a body-centred cubic lattice of symmetry I-43d of the low temperature phase. The study of the fermiology of Sr3Ir4Sn13 we present here should help inform models of multiband superconductivity in the superconducting stannides.
We review recent experimental measurements of the Fermi surface of the iron-pnictide superconductor LaFePO using quantum oscillation techniques. These studies show that the Fermi surface topology is close to that predicted by first principles density functional theory calculations, consisting of quasi-two-dimensional electron-like and hole-like sheets. The total volume of the two hole sheets is almost equal to that of the two electron sheets, and the hole and electron Fermi surface sheets are close to a nesting condition. No evidence for the predicted three dimensional pocket arising from the Fe $d_{z^2}$ band is found. Measurements of the effective mass suggest a renormalisation of around two, close to the value for the overall band renormalisation found in recent angle resolved photoemission measurements.
Recent improvements in momentum resolution by a factor of 32 lead to qualitatively new ARPES results on the spectra of Bi2Sr2CaCu2O8 (Bi2212) along the (pi,pi) direction, where there is a node in the superconducting gap. With improved resolution, we now see the intrinsic lineshape, which indicates the presence of true quasiparticles at the Fermi momentum in the superconducting state, and lack thereof in the normal state. The region of momentum space probed here is relevant for charge transport, motivating a comparison of our results to conductivity measurements by infrared reflectivity.
High-temperature superconductivity occurs near antiferromagnetic instabilities and nematic state. Debate remains on the origin of nematic order in FeSe and its relation with superconductivity. Here, we use transport, neutron scatter- ing and Fermi su rface measurements to demonstrate that hydro-thermo grown superconducting FeS, an isostructure of FeSe, is a tetragonal paramagnet without nematic order and with a quasiparticle mass significantly reduced from that of FeSe. Only stripe-type spin excitation is observed up to 100 meV. No direct coupling between spin excitation and superconductivity in FeS is found, suggesting that FeS is less correlated and the nematic order in FeSe is due to competing checkerboard and stripe spin fluctuations.
Reconstruction of the Fermi surface of high-temperature superconducting cuprates in the pseudogap state is analyzed within nearly exactly solvable model of the pseudogap state, induced by short-range order fluctuations of antiferromagnetic (AFM, spin density wave (SDW), or similar charge density wave (CDW)) order parameter, competing with superconductivity. We explicitly demonstrate the evolution from Fermi arcs (on the large Fermi surface) observed in ARPES experiments at relatively high temperatures (when both the amplitude and phase of density waves fluctuate randomly) towards formation of typical small electron and hole pockets, which are apparently observed in de Haas - van Alfen and Hall resistance oscillation experiments at low temperatures (when only the phase of density waves fluctuate, and correlation length of the short-range order is large enough). A qualitative criterion for quantum oscillations in high magnetic fields to be observable in the pseudogap state is formulated in terms of cyclotron frequency, correlation length of fluctuations and Fermi velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا