ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Oscillation Studies of the Fermi Surface of LaFePO

386   0   0.0 ( 0 )
 نشر من قبل Antony Carrington
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review recent experimental measurements of the Fermi surface of the iron-pnictide superconductor LaFePO using quantum oscillation techniques. These studies show that the Fermi surface topology is close to that predicted by first principles density functional theory calculations, consisting of quasi-two-dimensional electron-like and hole-like sheets. The total volume of the two hole sheets is almost equal to that of the two electron sheets, and the hole and electron Fermi surface sheets are close to a nesting condition. No evidence for the predicted three dimensional pocket arising from the Fe $d_{z^2}$ band is found. Measurements of the effective mass suggest a renormalisation of around two, close to the value for the overall band renormalisation found in recent angle resolved photoemission measurements.



قيم البحث

اقرأ أيضاً

We report extensive measurements of quantum oscillations in the normal state of the Fe-based superconductor LaFePO, (Tc ~ 6 K) using low temperature torque magnetometry and transport in high static magnetic fields (45 T). We find that the Fermi surfa ce is in broad agreement with the band-structure calculations with the quasiparticle mass enhanced by a factor ~2. The quasi-two dimensional Fermi surface consist of nearly-nested electron and hole pockets, suggesting proximity to a spin/charge density wave instability.
Despite the fact that 1111-type iron arsenides hold the record transition temperature of iron-based superconductors, their electronic structures have not been studied much because of the lack of high-quality single crystals. In this study, we complet ely determine the Fermi surface in the antiferromagnetic state of CaFeAsF, a 1111 iron-arsenide parent compound, by performing quantum oscillation measurements and band-structure calculations. The determined Fermi surface consists of a symmetry-related pair of Dirac electron cylinders and a normal hole cylinder. From analyses of quantum-oscillation phases, we demonstrate that the electron cylinders carry a nontrivial Berry phase $pi$. The carrier density is of the order of 10$^{-3}$ per Fe. This unusual metallic state with the extremely small carrier density is a consequence of the previously discussed topological feature of the band structure which prevents the antiferromagnetic gap from being a full gap. We also report a nearly linear-in-$B$ magnetoresistance and an anomalous resistivity increase above about 30 T for $B parallel c$, the latter of which is likely related to the quantum limit of the electron orbit. Intriguingly, the electrical resistivity exhibits a nonmetallic temperature dependence in the paramagnetic tetragonal phase ($T >$ 118 K), which may suggest an incoherent state. Our study provides a detailed knowledge of the Fermi surface in the antiferromagnetic state of 1111 parent compounds and moreover opens up a new possibility to explore Dirac-fermion physics in those compounds.
We perform de Haas-van Alphen measurements and quasiparticle self-consistent textit{GW} (QStextit{GW}) calculations on FeS. The calculated Fermi surface (FS) consists of two hole and two electron cylinders. We observe all the eight predicted FS cross sections experimentally. With momentum-independent band-energy adjustments of less than 0.1 eV, the maximum deviation between the calculated and observed cross sections is less than 0.2% of the Brillouin zone area for $B parallel c$. The carrier density is $sim$0.5 carriers/Fe. The mass enhancements are nearly uniform across the FS cylinders and moderate, $sim$2. The absence of a third hole cylinder with $d_{xy}$ character is favorable for the formation of a nodal superconducting gap.
We study the Fermi surface of Bi2Sr2CaCu2O8 (Bi2212) using angle resolved photoemission (ARPES) with a momentum resolution of ~ 0.01 of the Brillouin zone. We show that, contrary to recent suggestions, the Fermi surface is a large hole barrel centere d at (pi,pi), independent of the incident photon energy.
We have completely determined the Fermi surface in KFe$_2$As$_2$ via de Haas-van Alphen (dHvA) measurements. Fundamental frequencies $epsilon$, $alpha$, $zeta$, and $beta$ are observed in KFe$_2$As$_2$. The first one is attributed to a hole cylinder near the X point of the Brillouin zone, while the others to hole cylinders at the $Gamma$ point. We also observe magnetic breakdown frequencies between $alpha$ and $zeta$ and suggest a plausible explanation for them. The experimental frequencies show deviations from frequencies predicted by band structure calculations. Large effective masses up to 19 $m_e$ for $B parallel c$ have been found, $m_e$ being the free electron mass. The carrier number and Sommerfeld coefficient of the specific heat are estimated to be 1.01 -- 1.03 holes per formula unit and 82 -- 94 mJmol$^{-1}$K$^{-2}$, respectively, which are consistent with the chemical stoichiometry and a direct measure of 93 mJmol$^{-1}$K$^{-2}$ [H. Fukazawa textit{et al}., J. Phys. Soc. Jpn. textbf{80SA}, SA118 (2011)]. The Sommerfeld coefficient is about 9 times enhanced over a band value, suggesting the importance of low-energy spin and/or orbital fluctuations, and places KFe$_2$As$_2$ among strongly correlated metals. We have also performed dHvA measurements on Ba$_{0.07}$K$_{0.93}$Fe$_2$As$_2$ and have observed the $alpha$ and $beta$ frequencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا