ﻻ يوجد ملخص باللغة العربية
High-temperature superconductivity occurs near antiferromagnetic instabilities and nematic state. Debate remains on the origin of nematic order in FeSe and its relation with superconductivity. Here, we use transport, neutron scatter- ing and Fermi surface measurements to demonstrate that hydro-thermo grown superconducting FeS, an isostructure of FeSe, is a tetragonal paramagnet without nematic order and with a quasiparticle mass significantly reduced from that of FeSe. Only stripe-type spin excitation is observed up to 100 meV. No direct coupling between spin excitation and superconductivity in FeS is found, suggesting that FeS is less correlated and the nematic order in FeSe is due to competing checkerboard and stripe spin fluctuations.
We report inelastic neutron scattering measurements of the resonant spin excitations in Ba1-xKxFe2As2 over a broad range of electron band filling. The fall in the superconducting transi- tion temperature with hole doping coincides with the magnetic e
The electronic structure of the high-T_c superconductor Tl2Ba2CuO6+d is studied by ARPES. For a very overdoped Tc=30K sample, the Fermi surface consists of a single large hole pocket centered at (pi,pi) and is approaching a topological transition. Al
Low temperature specific heat has been measured in superconductor $beta$-FeS with T$_c$ = 4.55 K. It is found that the low temperature electronic specific heat C$_e$/T can be fitted to a linear relation in the low temperature region, but fails to be
We present a comprehensive study performed with high-resolution angle-resolved photoemission spectroscopy on triple-layered Bi2Sr2Ca2Cu3O10+d single crystals. By measurements above TC the Fermi surface topology defined by the Fermi level crossings of
We perform de Haas-van Alphen measurements and quasiparticle self-consistent textit{GW} (QStextit{GW}) calculations on FeS. The calculated Fermi surface (FS) consists of two hole and two electron cylinders. We observe all the eight predicted FS cross