ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin excitations and the Fermi surface of superconducting FeS

88   0   0.0 ( 0 )
 نشر من قبل Haoran Man
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-temperature superconductivity occurs near antiferromagnetic instabilities and nematic state. Debate remains on the origin of nematic order in FeSe and its relation with superconductivity. Here, we use transport, neutron scatter- ing and Fermi surface measurements to demonstrate that hydro-thermo grown superconducting FeS, an isostructure of FeSe, is a tetragonal paramagnet without nematic order and with a quasiparticle mass significantly reduced from that of FeSe. Only stripe-type spin excitation is observed up to 100 meV. No direct coupling between spin excitation and superconductivity in FeS is found, suggesting that FeS is less correlated and the nematic order in FeSe is due to competing checkerboard and stripe spin fluctuations.

قيم البحث

اقرأ أيضاً

We report inelastic neutron scattering measurements of the resonant spin excitations in Ba1-xKxFe2As2 over a broad range of electron band filling. The fall in the superconducting transi- tion temperature with hole doping coincides with the magnetic e xcitations splitting into two incom- mensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s+- symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight caused by the weakening of electron-electron correlations.
The electronic structure of the high-T_c superconductor Tl2Ba2CuO6+d is studied by ARPES. For a very overdoped Tc=30K sample, the Fermi surface consists of a single large hole pocket centered at (pi,pi) and is approaching a topological transition. Al though a superconducting gap with d_x^2-y^2 symmetry is tentatively identified, the quasiparticle evolution with momentum and binding energy exhibits a marked departure from the behavior observed in under and optimally doped cuprates. The relevance of these findings to scattering, many-body, and quantum-critical phenomena is discussed.
71 - Jie Xing , Hai Lin , Yufeng Li 2015
Low temperature specific heat has been measured in superconductor $beta$-FeS with T$_c$ = 4.55 K. It is found that the low temperature electronic specific heat C$_e$/T can be fitted to a linear relation in the low temperature region, but fails to be described by an exponential relation as expected by an s-wave gap. We try fittings to the data with different gap structures and find that a model with one or two nodal gaps can fit the data. Under a magnetic field, the field induced specific heat $Deltagamma$=[C$_e$(H)-C$_e$(0)]/T shows the Volovik relation $Deltagamma_e(H)propto sqrt{H}$, suggesting the presence of nodal gap(s) in this material.
We present a comprehensive study performed with high-resolution angle-resolved photoemission spectroscopy on triple-layered Bi2Sr2Ca2Cu3O10+d single crystals. By measurements above TC the Fermi surface topology defined by the Fermi level crossings of the CuO2-derived band was determined. A hole-like Fermi surface as for single and double-CuO2 layered Bi-based cuprates is found, giving new input to the current debate of the general Fermi surface topology of the high Tc superconductors. Furthermore, we present measurements of the superconducting gap of Bi-2223 and show that there are clear indications for a strong anisotropy of the superconducting gap. The universal properties of this phase in comparison to the other Bi-based cuprates will be discussed.
We perform de Haas-van Alphen measurements and quasiparticle self-consistent textit{GW} (QStextit{GW}) calculations on FeS. The calculated Fermi surface (FS) consists of two hole and two electron cylinders. We observe all the eight predicted FS cross sections experimentally. With momentum-independent band-energy adjustments of less than 0.1 eV, the maximum deviation between the calculated and observed cross sections is less than 0.2% of the Brillouin zone area for $B parallel c$. The carrier density is $sim$0.5 carriers/Fe. The mass enhancements are nearly uniform across the FS cylinders and moderate, $sim$2. The absence of a third hole cylinder with $d_{xy}$ character is favorable for the formation of a nodal superconducting gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا