ﻻ يوجد ملخص باللغة العربية
We present low temperature measurements of the resistance in magnetic field of superconducting ultrathin amorphous Bi films with normal state sheet resistances, $R_N$, near the resistance quantum, $R_Q={hbarover {e^2}}$. For $R_N<R_Q$, the tails of the resistive transitions show the thermally activated flux flow signature characteristic of defect motion in a vortex solid with a finite correlation length. When $R_N$ exceeds $R_Q$, the tails become non-activated. We conclude that in films where $R_N>R_Q$ there is no vortex solid and, hence, no zero resistance state in magnetic field. We describe how disorder induced quantum and/or mesoscopic fluctuations can eliminate the vortex solid and also discuss implications for the magnetic-field-tuned superconductor-insulator transition.
We investigate the field tuned quantum phase transition in a 2D low-disorder amorphous InO$_x$ film in the frequency range of 0.05 to 16 GHz employing microwave spectroscopy. In the zero temperature limit, the AC data are consistent with a scenario w
Electron Spin Resonance and optical reflectivity measurements demonstrate a metal-insulator transition in Na_2CsC_60 as the system passes from the low temperature simple cubic to the high temperature {it fcc} structure above 300 K. The non-conducting
We study the dynamics of the Cooper pairing across the T=0 phase diagram of the two-dimensional Hubbard Model, relevant for high-temperature superconductors, using a cluster extension of dynamical mean field theory. We find that the superconducting p
Thermal conductivity measurements have been performed on the superconducting ferromagnet UCoGe down to very low temperature and under magnetic field. In addition to the electronic quasiparticle thermal conductivity, additional contributions to the th
As the normal state sheet resistance, $R_n$, of a thin film superconductor increases, its superconducting properties degrade. For $R_nsimeq h/4e^2$ superconductivity disappears and a transition to a nonsuperconducting state occurs. We present electro