ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluctuation Effects in High Sheet Resistance Superconducting Films

127   0   0.0 ( 0 )
 نشر من قبل James M. Valles Jr.
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As the normal state sheet resistance, $R_n$, of a thin film superconductor increases, its superconducting properties degrade. For $R_nsimeq h/4e^2$ superconductivity disappears and a transition to a nonsuperconducting state occurs. We present electron tunneling and transport measurements on ultrathin, homogeneously disordered superconducting films in the vicinity of this transition. The data provide strong evidence that fluctuations in the amplitude of the superconducting order parameter dominate the tunneling density of states and the resistive transitions in this regime. We briefly discuss possible sources of these amplitude fluctuation effects. We also describe how the data suggest a novel picture of the superconductor to nonsuperconductor transition in homogeneous 2D systems.

قيم البحث

اقرأ أيضاً

Electron Spin Resonance and optical reflectivity measurements demonstrate a metal-insulator transition in Na_2CsC_60 as the system passes from the low temperature simple cubic to the high temperature {it fcc} structure above 300 K. The non-conducting electronic state is especially unexpected in view of the metallic character of other, apparently isostructural fullerides, like K_3C_60. The occurence of this phase in Na_2CsC_60 suggests that alkali specific effects can not be neglected in the description of the electronic properties of alkali doped fullerides. We discuss the origin of the insulating state and the relevance of our results for the anomaly observed in the magnitude of the superconducting transition temperature of Na_2AC_60 fullerides.
We show, by means of ab-initio calculations, that electron-electron correlations play an important role in potassium-doped picene ($K_x$-picene), recently characterized as a superconductor with $T_c = 18K$. The inclusion of exchange interactions by m eans of hybrid functionals reproduces the correct gap for the undoped compound and predicts an antiferromagnetic state for $x=3$, where superconductivity has been observed. The latter finding is compatible with a sizable value of the correlation strength, in agreement with simple estimates. Our results highlight the similarity between potassium-doped picene and alkali-doped fulleride superconductors.
We present low temperature measurements of the resistance in magnetic field of superconducting ultrathin amorphous Bi films with normal state sheet resistances, $R_N$, near the resistance quantum, $R_Q={hbarover {e^2}}$. For $R_N<R_Q$, the tails of t he resistive transitions show the thermally activated flux flow signature characteristic of defect motion in a vortex solid with a finite correlation length. When $R_N$ exceeds $R_Q$, the tails become non-activated. We conclude that in films where $R_N>R_Q$ there is no vortex solid and, hence, no zero resistance state in magnetic field. We describe how disorder induced quantum and/or mesoscopic fluctuations can eliminate the vortex solid and also discuss implications for the magnetic-field-tuned superconductor-insulator transition.
The heavy-fermion superconductor CeCoIn$_5$ displays an additional transition within its superconducting (SC) state, whose nature is characterized by high-precision studies of the isothermal field dependence of the entropy, derived from combined spec ific heat and magnetocaloric effect measurements at temperatures $Tgeq 100$ mK and fields $Hleq 12$ T aligned parallel, perpendicular and $18^circ$ off the tetragonal [100] direction. For any of these conditions, we do not observe an additional entropy contribution upon tuning at constant temperature by magnetic field from the homogeneous SC into the presumed Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) SC state. By contrast, for $Hparallel [100]$ a negative isothermal entropy contribution, compatible with spin-density-wave (SDW) ordering, is found. Our data exclude the formation of a FFLO state in CeCoIn$_5$ for out-of-plane field directions, where no SDW order exists.
Recent STM measurements have observed many inhomogeneous patterns of the local density of states on the surface of high-T_c cuprates. As a first step to study such disordered strong correlated systems, we use the BdG equation for the t-t-t-J model wi th an impurity. The impurity is taken into account by a local potential or local variation of the hopping/exchange terms. Strong correlation is treated by a Gutzwiller mean-field theory with local Gutzwiller factors and local chemical potentials. It turned out that the potential impurity scattering is greatly suppressed, while the local variation of hoppings/exchanges is enhanced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا