ترغب بنشر مسار تعليمي؟ اضغط هنا

Resistivity of non-Fermi liquid U2Pt2In under pressure

126   0   0.0 ( 0 )
 نشر من قبل Pedro Estrela
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-Fermi liquid behaviour in single-crystalline U2Pt2In has been studied by means of resistivity experiments (I||c) under hydrostatic pressure (P<1.5 GPa). At ambient pressure the resistivity rho(T) follows a power law rho~T^alpha with alpha~0.5. Upon applying pressure alpha increases. For P>1 GPa a minimum develops in rho(T). A study of the field dependence of the minimum confirms its magnetic origin. The ratio c/a is proposed as the effective control parameter, rather than the unit cell volume.

قيم البحث

اقرأ أيضاً

We have investigated hexagonal YbAgGe down to 70 mK by measuring the magnetic-field and temperature dependence of the resistivity rho of single crystals in fields up to 14 T. Our results extend the H-T phase diagram to the lowest temperatures for H a pplied in the basal plane and along the c-axis. In particular, critical fields for the suppression of several magnetic phases are determined. The temperature dependence of rho(T) is unusual: whereas at low H, rho(T) reveals a temperature exponent n>=2, we find 1<=n<1.5 and strong enhancement of the temperature dependence of rho(T) close to and beyond the highest critical field for each field direction. For H applied in the basal plane, at high fields a conventional T^2 dependence of rho(T) is reached above 10 T accompanied by an approach to saturation of a strong drop in the residual resistivity. YbAgGe appears to be one of few Yb-based stoichiometric systems, where quantum-critical behaviour may be induced by a magnetic field.
129 - F F Tafti , W Wu , S R Julian 2013
An unusual, non-metallic resistivity of the 111 iron-pnictide compound FeCrAs is shown to be relatively unchanged under pressures of up to 17 GPa. Combined with our previous finding that this non-metallic behaviour persists from at least 80 mK to 800 K, this shows that the non-metallic phase is exceptionally robust. Antiferromagnetic order, with a Neel temperature T_N ~ 125 K at ambient pressure, is suppressed at a rate of 7.1 +/- 0.1 K/GPa, falling to below 50 K at 10 GPa. We conclude that formation of a spin-density wave gap at T_N does not play an important role in the non-metallic resistivity of FeCrAs at low temperatures.
The effect of hydrostatic pressure (p<= 1.8 GPa) on the non-Fermi liquid state of U_2Pt_2In is investigated by electrical resistivity measurements in the temperature interval 0.3-300 K. The experiments were carried out on single-crystals with the cur rent along (I||c) and perpendicular (I||a) to the tetragonal axis. The pressure effect is strongly current-direction dependent. For I||a we observe a rapid recovery of the Fermi-liquid T^2-term with pressure. The low-temperature resistivity can be analysed satisfactorily within the magnetotransport theory of Rosch, which provides strong evidence for the location of U_2Pt_2In at an antiferromagnetic quantum critical point. For I||c the resistivity increases under pressure, indicating the enhancement of an additional scattering mechanism. In addition, we have measured the pressure dependence of the antiferromagnetic ordering temperature (T_N= 37.6 K) of the related compound U_2Pd_2In. A simple Doniach-type diagram for U_2Pt_2In and U_2Pd_2In under pressure is presented.
We have measured resistivity as a function of temperature and pressure of Ti4O7 twinned crystals using different contact configurations. Pressures over 4kbar depress the localization of bipolarons and allow the study of the electrical conduction of t he bipolaronic phase down to low temperatures. For pressures P > 40 kbar the bipolaron formation transition is suppressed and a nearly pressure independent behavior is obtained for the resistivity. We observed an anisotropic conduction. When current is injected parallel to the principal axis, a metallic conduction with interacting carrier effects is predominant. A superconducting state was not obtained down to 1.2 K, although evidences of the proximity of a quantum critical point were noticed. While when current is injected non-parallel to the crystals principal axis, we obtained a logarithmic divergence of the resistivity at low temperatures. For this case, our results for the high pressure regime can be interpreted in the framework of interacting carriers (polarons or bipolarons) scattered by Two Level Systems.
228 - L. Forro , R. Gaal , H. Berger 2000
The phase diagram of BaVS3 is studied under pressure using resistivity measurements. The temperature of the metal to nonmagnetic Mott insulator transition decreases under pressure, and vanishes at the quantum critical point p_cr=20kbar. We find two k inds of anomalous conducting states. The high-pressure metallic phase is a non-Fermi liquid described by Delta rho = T^n where n=1.2-1.3 at 1K < T < 60K. At p<p_cr, the transition is preceded by a wide precursor region with critically increasing resistivity which we ascribe to the opening of a soft Coulomb gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا