ترغب بنشر مسار تعليمي؟ اضغط هنا

High-pressure study of the non-Fermi liquid material U_2Pt_2In

73   0   0.0 ( 0 )
 نشر من قبل A. de Visser
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of hydrostatic pressure (p<= 1.8 GPa) on the non-Fermi liquid state of U_2Pt_2In is investigated by electrical resistivity measurements in the temperature interval 0.3-300 K. The experiments were carried out on single-crystals with the current along (I||c) and perpendicular (I||a) to the tetragonal axis. The pressure effect is strongly current-direction dependent. For I||a we observe a rapid recovery of the Fermi-liquid T^2-term with pressure. The low-temperature resistivity can be analysed satisfactorily within the magnetotransport theory of Rosch, which provides strong evidence for the location of U_2Pt_2In at an antiferromagnetic quantum critical point. For I||c the resistivity increases under pressure, indicating the enhancement of an additional scattering mechanism. In addition, we have measured the pressure dependence of the antiferromagnetic ordering temperature (T_N= 37.6 K) of the related compound U_2Pd_2In. A simple Doniach-type diagram for U_2Pt_2In and U_2Pd_2In under pressure is presented.



قيم البحث

اقرأ أيضاً

167 - D. A. Zocco , A. Slebarski , 2012
We present measurements of the temperature dependence of electrical resistivity of CeRhSn up to ~ 27 kbar. At low temperatures, the electrical resistivity varies linearly with temperature for all pressures, indicating non-Fermi liquid behavior. Below a temperature Tf ~ 6 K, the electrical resistivity deviates from a linear dependence. We found that the low-temperature feature centered at T = Tf shows a pressure dependence dTf/dP ~ 30 mK/kbar which is typical of canonical spin glasses. This interplay between spin-glass-like and non-Fermi liquid behavior was observed in both CeRhSn and a Ce0.9La0.1RhSn alloy.
Non-Fermi liquid behaviour in single-crystalline U2Pt2In has been studied by means of resistivity experiments (I||c) under hydrostatic pressure (P<1.5 GPa). At ambient pressure the resistivity rho(T) follows a power law rho~T^alpha with alpha~0.5. Up on applying pressure alpha increases. For P>1 GPa a minimum develops in rho(T). A study of the field dependence of the minimum confirms its magnetic origin. The ratio c/a is proposed as the effective control parameter, rather than the unit cell volume.
228 - L. Forro , R. Gaal , H. Berger 2000
The phase diagram of BaVS3 is studied under pressure using resistivity measurements. The temperature of the metal to nonmagnetic Mott insulator transition decreases under pressure, and vanishes at the quantum critical point p_cr=20kbar. We find two k inds of anomalous conducting states. The high-pressure metallic phase is a non-Fermi liquid described by Delta rho = T^n where n=1.2-1.3 at 1K < T < 60K. At p<p_cr, the transition is preceded by a wide precursor region with critically increasing resistivity which we ascribe to the opening of a soft Coulomb gap.
The strange electronic state of a class of materials which violates the predictions of conventional Fermi-liquid theory of metals remains enigmatic. Proximity to a quantum critical point is a possible origin of this non-Fermi liquid (NFL) behavior, w hich is usually accomplished by tuning the ground state with non-thermal control parameters such as chemical composition, magnetic field or pressure. We present the spin dynamics study of a stoichiometric NFL system CeRhBi, using low-energy inelastic neutron scattering (INS) and muon spin relaxation (muSR) measurements. It shows evidence for an energy-temperature (E/T) scaling in the INS dynamic response and a time-field scaling of the muSR asymmetry function indicating a quantum critical behavior in this compound. The E/T scaling reveals a local character of quantum criticality consistent with the power-law divergence of the magnetic susceptibility, logarithmic divergence of the magnetic heat capacity and T-linear resistivity at low temperature. The NFL behavior and local criticality occur over a very wide dynamical range at zero field and ambient pressure without any tuning in this stoichiometric heavy fermion compound is striking, making CeRhBi an exemplary model system amenable to in-depth studies for quantum criticality.
262 - T. Senthil 2008
At certain quantum critical points in metals an entire Fermi surface may disappear. A crucial question is the nature of the electronic excitations at the critical point. Here we provide arguments showing that at such quantum critical points the Fermi surface remains sharply defined even though the Landau quasiparticle is absent. The presence of such a critical Fermi surface has a number of consequences for the universal phenomena near the quantum critical point which are discussed. In particular the structure of scaling of the universal critical singularities can be significantly modified from more familiar criticality. Scaling hypotheses appropriate to a critical fermi surface are proposed. Implications for experiments on heavy fermion critical points are discussed. Various phenomena in the normal state of the cuprates are also examined from this perspective. We suggest that a phase transition that involves a dramatic reconstruction of the Fermi surface might underlie a number of strange observations in the metallic states above the superconducting dome.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا