ترغب بنشر مسار تعليمي؟ اضغط هنا

Sn delta-doping in GaAs

193   0   0.0 ( 0 )
 نشر من قبل A. de Visser
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have prepared a number of GaAs structures delta-doped by Sn using the well-known molecular beam epitaxy growth technique. The samples obtained for a wide range of Sn doping densities were characterised by magnetotransport experiments at low temperatures and in high magnetic fields up to 38 T. Hall-effect and Shubnikov-de Haas measurements show that the electron densities reached are higher than for other delta-dopants, like Si and Be. The maximum carrier density determined by the Hall effect equals 8.4x10^13 cm^-2. For all samples several Shubnikov-de Haas frequencies were observed, indicating the population of multiple subbands. The depopulation fields of the subbands were determined by measuring the magnetoresistance with the magnetic field in the plane of the delta-layer. The experimental results are in good agreement with selfconsistent bandstructure calculations. These calculation shows that in the sample with the highest electron density also the conduction band at the L point is populated.

قيم البحث

اقرأ أيضاً

We report results of investigations of structural and transport properties of GaAs/Ga(1-x)In(x)As/GaAs quantum wells (QWs) having a 0.5-1.8 ML thick Mn layer, separated from the QW by a 3 nm thick spacer. The structure has hole mobility of about 2000 cm2/(V*s) being by several orders of magnitude higher than in known ferromagnetic two-dimensional structures. The analysis of the electro-physical properties of these systems is based on detailed study of their structure by means of high-resolution X-ray diffractometry and glancing-incidence reflection, which allow us to restore the depth profiles of structural characteristics of the QWs and thin Mn containing layers. These investigations show absence of Mn atoms inside the QWs. The quality of the structures was also characterized by photoluminescence spectra from the QWs. Transport properties reveal features inherent to ferromagnetic systems: a specific maximum in the temperature dependence of the resistance and the anomalous Hall effect (AHE) observed in samples with both metallic and activated types of conductivity up to ~100 K. AHE is most pronounced in the temperature range where the resistance maximum is observed, and decreases with decreasing temperature. The results are discussed in terms of interaction of 2D-holes and magnetic Mn ions in presence of large-scale potential fluctuations related to random distribution of Mn atoms. The AHE values are compared with calculations taking into account its intrinsic mechanism in ferromagnetic systems.
The incorporation paths of Be in GaAs nanowires grown by the Ga-assisted method in molecular beam epitaxy has been investigated by electrical measurements of nanowires with different doping profiles. We find that Be atoms incorporate preferentially v ia the nanowire side facets, while the incorporation path through the Ga droplet is negligible. We also demonstrate that Be can diffuse into the volume of the nanowire giving an alternative incorporation path. This work is an important step towards controlled doping of nanowires and will serve as a help for designing future devices based on nanowires.
Ge with a quasi-direct band gap can be realized by strain engineering, alloying with Sn, or ultrahigh n-type doping. In this work, we use all three approaches together to fabricate direct-band-gap Ge-Sn alloys. The heavily doped n-type Ge-Sn is reali zed with CMOS-compatible nonequilibrium material processing. P is used to form highly doped n-type Ge-Sn layers and to modify the lattice parameter of P-doped Ge-Sn alloys. The strain engineering in heavily-P-doped Ge-Sn films is confirmed by x-ray diffraction and micro Raman spectroscopy. The change of the band gap in P-doped Ge-Sn alloy as a function of P concentration is theoretically predicted by density functional theory and experimentally verified by near-infrared spectroscopic ellipsometry. According to the shift of the absorption edge, it is shown that for an electron concentration greater than 1x10^20 cm-3 the band-gap renormalization is partially compensated by the Burstein-Moss effect. These results indicate that Ge-based materials have high potential for use in near-infrared optoelectronic devices, fully compatible with CMOS technology.
91 - M. Ito , M. Uchida , Y. Kozuka 2016
We fabricate LaxSr2-x-yBayIrO4-delta thin films by pulsed laser deposition, in an effort to realize the effective carrier doping and metallization in the Sr2IrO4 system. We design ideal in-plane Ir-O-Ir frame structure by utilizing tensile substrate strain and Ba substitution, as well as control La doping and oxygen deficiency. This enables us to elucidate relation between the charge transport and the carrier density through systematic changes from original p-type spin-orbit Mott insulator to highly doped n-type metal.
We present here the electronic structure and optical properties of InGaAs quantum wells with barrier doped with Manganese. We calculated the electronic states and optical emission within the envelope function and effective mass approximations using t he spin-density functional theory in the presence of an external magnetic field. We observe magneto-oscillations of the Landau levels at low-magnetic fields (B < 5 T) that are dominated by the magnetic interaction between holes spin and Mn spin, while at high magnetic fields the spin-polarization of the hole gas is the dominant effect. Our results also show that a gate voltage alter significantly the magneto-oscillations of the emission energy and may be an external control parameter for the magnetic properties of the system. Finally, we discuss the influence of the Landau Levels oscillations in the emission spectra and compare with available experimental.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا