ﻻ يوجد ملخص باللغة العربية
We describe in detail and extend a recently introduced nonperturbative renormalization group (RG) method for surface growth. The scale invariant dynamics which is the key ingredient of the calculation is obtained as the fixed point of a RG transformation relating the representation of the microscopic process at two different coarse-grained scales. We review the RG calculation for systems in the Kardar-Parisi-Zhang universality class and compute the roughness exponent for the strong coupling phase in dimensions from 1 to 9. Discussions of the approximations involved and possible improvements are also presented. Moreover, very strong evidence of the absence of a finite upper critical dimension for KPZ growth is presented. Finally, we apply the method to the linear Edwards-Wilkinson dynamics where we reproduce the known exact results, proving the ability of the method to capture qualitatively different behaviors.
We consider the discrete surface growth process with relaxation to the minimum [F. Family, J. Phys. A {bf 19} L441, (1986).] as a possible synchronization mechanism on scale-free networks, characterized by a degree distribution $P(k) sim k^{-lambda}$
Persistence probabilities of the interface height in (1+1)- and (2+1)-dimensional atomistic, solid-on-solid, stochastic models of surface growth are studied using kinetic Monte Carlo simulations, with emphasis on models that belong to the molecular b
In this letter, we proposed an ungrowing scale-free network model, wherein the total number of nodes is fixed and the evolution of network structure is driven by a rewiring process only. In spite of the idiographic form of $G$, by using a two-order m
Stochastic models of surface growth are usually based on randomly choosing a substrate site to perform iterative steps, as in the etching model [1]. In this paper I modify the etching model to perform sequential, instead of random, substrate scan. Th
In the Yule-Simon process, selection of words follows the preferential attachment mechanism, resulting in the power-law growth in the cumulative number of individual word occurrences. This is derived using mean-field approximation, assuming a continu