ترغب بنشر مسار تعليمي؟ اضغط هنا

Scale Invariant Dynamics of Surface Growth

107   0   0.0 ( 0 )
 نشر من قبل Claudio Castellano
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe in detail and extend a recently introduced nonperturbative renormalization group (RG) method for surface growth. The scale invariant dynamics which is the key ingredient of the calculation is obtained as the fixed point of a RG transformation relating the representation of the microscopic process at two different coarse-grained scales. We review the RG calculation for systems in the Kardar-Parisi-Zhang universality class and compute the roughness exponent for the strong coupling phase in dimensions from 1 to 9. Discussions of the approximations involved and possible improvements are also presented. Moreover, very strong evidence of the absence of a finite upper critical dimension for KPZ growth is presented. Finally, we apply the method to the linear Edwards-Wilkinson dynamics where we reproduce the known exact results, proving the ability of the method to capture qualitatively different behaviors.


قيم البحث

اقرأ أيضاً

We consider the discrete surface growth process with relaxation to the minimum [F. Family, J. Phys. A {bf 19} L441, (1986).] as a possible synchronization mechanism on scale-free networks, characterized by a degree distribution $P(k) sim k^{-lambda}$ , where $k$ is the degree of a node and $lambda$ his broadness, and compare it with the usually applied Edward-Wilkinson process [S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London Ser. A {bf 381},17 (1982) ]. In spite of both processes belong to the same universality class for Euclidean lattices, in this work we demonstrate that for scale-free networks with exponents $lambda<3$ this is not true. Moreover, we show that for these ubiquitous cases the Edward-Wilkinson process enhances spontaneously the synchronization when the system size is increased, which is a non-physical result. Contrarily, the discrete surface growth process do not present this flaw and is applicable for every $lambda$.
Persistence probabilities of the interface height in (1+1)- and (2+1)-dimensional atomistic, solid-on-solid, stochastic models of surface growth are studied using kinetic Monte Carlo simulations, with emphasis on models that belong to the molecular b eam epitaxy (MBE) universality class. Both the initial transient and the long-time steady-state regimes are investigated. We show that for growth models in the MBE universality class, the nonlinearity of the underlying dynamical equation is clearly reflected in the difference between the measured values of the positive and negative persistence exponents in both transient and steady-state regimes. For the MBE universality class, the positive and negative persistence exponents in the steady-state are found to be $theta^S_{+} = 0.66 pm 0.02$ and $theta^S_{-} = 0.78 pm 0.02$, respectively, in (1+1) dimensions, and $theta^S_{+} = 0.76 pm 0.02$ and $theta^S_{-} =0.85 pm 0.02$, respectively, in (2+1) dimensions. The noise reduction technique is applied on some of the (1+1)-dimensional models in order to obtain accurate values of the persistence exponents. We show analytically that a relation between the steady-state persistence exponent and the dynamic growth exponent, found earlier to be valid for linear models, should be satisfied by the smaller of the two steady-state persistence exponents in the nonlinear models. Our numerical results for the persistence exponents are consistent with this prediction. We also find that the steady-state persistence exponents can be obtained from simulations over times that are much shorter than that required for the interface to reach the steady state. The dependence of the persistence probability on the system size and the sampling time is shown to be described by a simple scaling form.
398 - Yan-Bo Xie , Tao Zhou , 2005
In this letter, we proposed an ungrowing scale-free network model, wherein the total number of nodes is fixed and the evolution of network structure is driven by a rewiring process only. In spite of the idiographic form of $G$, by using a two-order m aster equation, we obtain the analytic solution of degree distribution in stable state of the network evolution under the condition that the selection probability $G$ in rewiring process only depends on nodes degrees. A particular kind of the present networks with $G$ linearly correlated with degree is studied in detail. The analysis and simulations show that the degree distributions of these networks can varying from the Possion form to the power-law form with the decrease of a free parameter $alpha$, indicating the growth may not be a necessary condition of the self-organizaton of a network in a scale-free structure.
71 - Bernardo A. Mello 2017
Stochastic models of surface growth are usually based on randomly choosing a substrate site to perform iterative steps, as in the etching model [1]. In this paper I modify the etching model to perform sequential, instead of random, substrate scan. Th e randomicity is introduced not in the site selection but in the choice of the rule to be followed in each site. The change positively affects the study of dynamic and asymptotic properties, by reducing the finite size ef- fect and the short-time anomaly and by increasing the saturation time. It also has computational benefits: better use of the cache memory and the possibility of parallel implementation.
341 - Yasuhiro Hashimoto 2015
In the Yule-Simon process, selection of words follows the preferential attachment mechanism, resulting in the power-law growth in the cumulative number of individual word occurrences. This is derived using mean-field approximation, assuming a continu um limit of both the time and number of word occurrences. However, time and word occurrences are inherently discrete in the process, and it is natural to assume that the cumulative number of word occurrences has a certain fluctuation around the average behavior predicted by the mean-field approximation. We derive the exact and approximate forms of the probability distribution of such fluctuation analytically and confirm that those probability distributions are well supported by the numerical experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا