ﻻ يوجد ملخص باللغة العربية
In this letter, we proposed an ungrowing scale-free network model, wherein the total number of nodes is fixed and the evolution of network structure is driven by a rewiring process only. In spite of the idiographic form of $G$, by using a two-order master equation, we obtain the analytic solution of degree distribution in stable state of the network evolution under the condition that the selection probability $G$ in rewiring process only depends on nodes degrees. A particular kind of the present networks with $G$ linearly correlated with degree is studied in detail. The analysis and simulations show that the degree distributions of these networks can varying from the Possion form to the power-law form with the decrease of a free parameter $alpha$, indicating the growth may not be a necessary condition of the self-organizaton of a network in a scale-free structure.
We consider the discrete surface growth process with relaxation to the minimum [F. Family, J. Phys. A {bf 19} L441, (1986).] as a possible synchronization mechanism on scale-free networks, characterized by a degree distribution $P(k) sim k^{-lambda}$
Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type
Biased (degree-dependent) percolation was recently shown to provide new strategies for turning robust networks fragile and vice versa. Here we present more detailed results for biased edge percolation on scale-free networks. We assume a network in wh
We introduce a network growth model in which the preferential attachment probability includes the fitness vertex and the Euclidean distance between nodes. We grow a planar network around its barycenter. Each new site is fixed in space by obeying a power law distribution.
Contrary to many recent models of growing networks, we present a model with fixed number of nodes and links, where it is introduced a dynamics favoring the formation of links between nodes with degree of connectivity as different as possible. By appl