ﻻ يوجد ملخص باللغة العربية
In many cases the standard perturbation approach appears to be too simple to describe precisely the angle resolved photoemission spectrum of strongly correlated electron system. In particular, to describe the momentum asymmetry observed in photoemission spectra of high-Tc cuprates a phenomenological approach based on extremely correlated Fermi-liquid model has been recently introduced. In this paper we analyze the general structure of the Green function of quasiparticles in strongly correlated electron systems and stress that it is defined not only by the self-energy of Hubbard quasiparticles but also by a strength operator. We show that the later leads to an additional odd momentum contribution to the spectral function and alone can explain the observed asymmetry. So, the asymmetry of the ARPES spectra can be a measure of the strength of electron correlations in materials.
We reexamine the Yang-Yang-Takahashi method of deriving the thermodynamic Bethe ansatz equations which describe strongly correlated electron systems of fundamental physical interest, such as the Hubbard, $s-d$ exchange (Kondo) and Anderson models. It
We introduce a new mathematical object, the fermionant ${mathrm{Ferm}}_N(G)$, of type $N$ of an $n times n$ matrix $G$. It represents certain $n$-point functions involving $N$ species of free fermions. When N=1, the fermionant reduces to the determin
A number of recent experiments report the low-temperature thermopower $alpha$ and specific heat coefficients $gamma=C_V/T$ of strongly correlated electron systems. Describing the charge and heat transport in a thermoelectric by transport equations, a
Recent progress in neutron spin-echo spectroscopy by means of longitudinal Modulation of IntEnsity with Zero Effort (MIEZE) is reviewed. Key technical characteristics are summarized which highlight that the parameter range accessible in momentum and
The purpose of this paper is (i) to present a generic and fully functional implementation of the density-matrix renormalization group (DMRG) algorithm, and (ii) to describe how to write additional strongly-correlated electron models and geometries by