ﻻ يوجد ملخص باللغة العربية
We discuss the solution of the Mott transition problem in a fully frustrated lattice with a semicircular density of states in the limit of infinite dimensions from the point of view of a Landau free energy functional. This approach provides a simple relation between the free energy of the lattice model and that of its local description in terms of an impurity model. The character of the Mott transition in infinite dimensions, (as reviewed by Georges Kotliar Krauth and Rozenberg, RMP 68, 1996, 13) follows simply from the form of the free energy functional and the physics of quantum impurity models. At zero temperature, below a critical value of the interaction U, a Mott insulator with a finite gap in the one particle spectrum, becomes unstable to the formation of a narrow band near the Fermi energy. Using the insights provided by the Landau approach we answer questions raised about the dynamical mean field solution of the Mott transition problem, and comment on its applicability to three dimensional transition metal oxides.
We study the second order finite temperature Mott transition point in the fully frustrated Hubbard model at half filling, within Dynamical Mean Field Theory. Using quantum Monte Carlo simulations we show the existence of a finite temperature second o
We study the Mott transition in a frustrated Hubbard model with next-nearest neighbor hopping at half-filling. The interplay between interaction, dimensionality and geometric frustration closes the one-dimensional Mott gap and gives rise to a metalli
The infinite dimensional half-filled Hubbard model can be mapped exactly with no additional constraint onto a model of free fermions coupled in a $Z_2$ gauge-invariant manner to auxiliary Ising spins in a transverse field. In this slave-spin represen
We have studied the impact of non-local electronic correlations at all length scales on the Mott-Hubbard metal-insulator transition in the unfrustrated two-dimensional Hubbard model. Combining dynamical vertex approximation, lattice quantum Monte-Car
We consider a Mott transition of the Hubbard model in infinite dimensions. The dynamical mean- field theory is employed in combination with a continuous-time quantum Monte Carlo (CTQMC) method for an accurate description at low temperatures. From the