ﻻ يوجد ملخص باللغة العربية
We consider a Mott transition of the Hubbard model in infinite dimensions. The dynamical mean- field theory is employed in combination with a continuous-time quantum Monte Carlo (CTQMC) method for an accurate description at low temperatures. From the double occupancy and the energy density, which are directly measured from the CTQMC method, we construct the phase diagram. We pay particular attention to the construction of the first-order phase transition line (PTL) in the co- existence region of metallic and insulating phases. The resulting PTL is found to exhibit reasonable agreement with earlier finite-temperature results. We also show by a systematic inclusion of low- temperature data that the PTL, which is achieved independently of the previous zero-temperature results, approaches monotonically the transition point from earlier zero-temperature studies.
We consider the one-dimensional extended Hubbard model in the presence of an explicit dimerization $delta$. For a sufficiently strong nearest neighbour repulsion we establish the existence of a quantum phase transition between a mixed bond-order wave
We study the second order finite temperature Mott transition point in the fully frustrated Hubbard model at half filling, within Dynamical Mean Field Theory. Using quantum Monte Carlo simulations we show the existence of a finite temperature second o
We discuss the solution of the Mott transition problem in a fully frustrated lattice with a semicircular density of states in the limit of infinite dimensions from the point of view of a Landau free energy functional. This approach provides a simple
We investigate the phases of the ionic Hubbard model in a two-dimensional square lattice using determinant quantum Monte Carlo (DQMC). At half-filling, when the interaction strength or the staggered potential dominate we find Mott and band insulators
The Hund coupling in multiorbital Hubbard systems induces spin freezing and associated Hund metal behavior. Using dynamical mean field theory, we explore the effect of local moment formation, spin and charge excitations on the entropy and specific he