ﻻ يوجد ملخص باللغة العربية
We have studied the impact of non-local electronic correlations at all length scales on the Mott-Hubbard metal-insulator transition in the unfrustrated two-dimensional Hubbard model. Combining dynamical vertex approximation, lattice quantum Monte-Carlo and variational cluster approximation, we demonstrate that scattering at long-range fluctuations, i.e., Slater-like paramagnons, opens a spectral gap at weak-to-intermediate coupling -- irrespectively of the preformation of localized or short-ranged magnetic moments. This is the reason, why the two-dimensional Hubbard model is insulating at low enough temperatures for any (finite) interaction and no Mott-Hubbard transition is observed.
We study the second order finite temperature Mott transition point in the fully frustrated Hubbard model at half filling, within Dynamical Mean Field Theory. Using quantum Monte Carlo simulations we show the existence of a finite temperature second o
We study theoretically the zero temperature phase transition in two dimensions from a Fermi liquid to a paramagnetic Mott insulator with a spinon Fermi surface. We show that the approach to the bandwidth controlled Mott transition from the metallic s
The combination of bandstructure theory in the local density approximation with dynamical mean field theory was recently successfully applied to V$_2$O$_3$ -- a material which undergoes the f amous Mott-Hubbard metal-insulator transition upon Cr dopi
We discuss the solution of the Mott transition problem in a fully frustrated lattice with a semicircular density of states in the limit of infinite dimensions from the point of view of a Landau free energy functional. This approach provides a simple
Identifying the fingerprints of the Mott-Hubbard metal-insulator transition may be quite elusive in correlated metallic systems if the analysis is limited to the single particle level. However, our dynamical mean-field calculations demonstrate that t