ﻻ يوجد ملخص باللغة العربية
The equilibrium ground-state structure of LiNbO3 in the paraelectric and ferroelectric phases is fully optimized in a first-principles calculation using the full-potential linearized augmented plane wave method. The equilibrium volume, c/a ratio and all (four, in the ferroelectric phase) internal parameters are found to be in good agreement with the experimental data. Frozen phonon calculations are performed for TO-Gamma phonons corresponding to the A1 and A2 irreducible representations of the R3c space group in the ferroelectric phase. The comparison with available experimental frequencies for the A1 modes is satisfactory (including the 6Li isotope effect), and the displacement patterns are unambiguously attributed. For the (Raman inactive) A2 modes, phonon frequencies and eigenvectors are predicted.
The four A1-TO Gamma phonon frequencies in lithium tantalate are calculated in the frozen-phonon approach from first principles using the full-potential linearized augmented plane wave method. A good agreement with the experimental data available is
We have investigated surface acoustic wave propagation in Ni/LiNbO$_3$ hybrid devices. We have found the absorption and phase velocity are dependent on the sign of wave vector in a device, which indicates the nonreciprocal propagation characteristic
The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO$_3$ were measured for temperatures $200 leq T leq 750,$K, using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO$
The domain structure of uniaxial ferroelectric lithium niobate single crystals is investigated using Raman spectroscopy mapping. The influence of doping with magnesium and poling at room temperature is studied by analysing frequency shifts at domain
The structure of BaMg1/3Ta2/3O3 (BMT) has been studied using X-ray scattering. The phonons have been measured and the results are similar to those of other materials with the perovskite structure such as PbMg1/3Nb2/3O3 (PMN). The acoustic and lowest