ﻻ يوجد ملخص باللغة العربية
The structure of BaMg1/3Ta2/3O3 (BMT) has been studied using X-ray scattering. The phonons have been measured and the results are similar to those of other materials with the perovskite structure such as PbMg1/3Nb2/3O3 (PMN). The acoustic and lowest energy optic branches were measured but it was not possible to measure the branches of higher energy, possibly this is because they largely consist of oxygen motions. High-resolution inelastic measurements also showed that the diffuse scattering was strictly elastic and not directly related to the phonon spectra. A diffuse scattering was observed in BMT near the (Hpm1/2, Kpm1/2, Lpm1/2) points in the Brillouin zone and this had a characteristic cube shape. This arises from ordering of the B-site ions in BMT. Additional experiments revealed a diffuse scattering in BMT similar in shape to Bragg reflections at wave-vectors of the form (Hpm1/3, Kpm1/3, Lpm1/3). Such reflections were also observed by Lufaso [Chem. Matt. 16 (2004) 2148] from powders and suggest that this structure of BMT consists of 4 differently oriented domains of a trigonal structure and results from a different ordering of the B-site ions from that responsible for the scattering at the (Hpm1/2, Kpm1/2, Lpm1/2) points. The results lead us to suggest that for BMT single crystals the bulk has the properties of a cubic perovskite, whereas the surface may have quite different structure from that of the bulk. This difference resembles the behaviour of cubic relaxors like PMN and PMN doped by PbTiO3, where significant surface effects have been reported.
We address the low-energy effective Hamiltonian of electron doped d0 perovskite semiconductors in cubic and tetragonal phases using the k*p method. The Hamiltonian depends on the spin-orbit interaction strength, on the temperature-dependent tetragona
Hexagonal perovskites are an attractive group of materials due to their various polymorph phases and rich structure-property relationships. BaRuO3 (BRO) is a prototypical hexagonal perovskite, in which the electromagnetic properties are significantly
In a lot of systems, charge transport is governed by local features rather than being a global property as suggested by extracting a single resistance value. Consequently, techniques that resolve local structure in the electronic potential are crucia
The structural and electronic properties of twisted bilayer graphene are investigated from first principles and tight binding approach as a function of the twist angle (ranging from the first magic angle $theta=1.08^circ$ to $theta=3.89^circ$, with t
It is widely accepted that structural glasses and disordered crystals exhibit anomalies in the their thermal, mechanical and acoustic properties as manifestations of the breakdown of the long-wavelength approximation in a disordered dissipative envir