ﻻ يوجد ملخص باللغة العربية
We study the thermodynamics of Ising spins on the triangular kagome lattice (TKL) using exact analytic methods as well as Monte Carlo simulations. We present the free energy, internal energy, specific heat, entropy, sublattice magnetizations, and susceptibility. We describe the rich phase diagram of the model as a function of coupling constants, temperature, and applied magnetic field. For frustrated interactions in the absence of applied field, the ground state is a spin liquid phase with integer residual entropy per spin $s_0/k_B={1/9} ln 72approx 0.4752...$. In weak applied field, the system maps to the dimer model on a honeycomb lattice, with irrational residual entropy 0.0359 per spin and quasi-long-range order with power-law spin-spin correlations that should be detectable by neutron scattering. The power-law correlations become exponential at finite temperatures, but the correlation length may still be long.
The recently fabricated two-dimensional magnetic materials Cu9X2(cpa)6.xH2O (cpa=2-carboxypentonic acid; X=F,Cl,Br) have copper sites which form a triangular kagome lattice (TKL), formed by introducing small triangles (``a-trimers) inside of each kag
We derive exact results for close-packed dimers on the triangular kagome lattice (TKL), formed by inserting triangles into the triangles of the kagome lattice. Because the TKL is a non-bipartite lattice, dimer-dimer correlations are short-ranged, so
This paper has a pedagogical introduction. We describe the correct method for performing Monte Carlo simulations of Ising model systems with spin greater than one half. Correct and incorrect procedures are clearly outlined and the consequences of usi
We discuss the detailed balance condition for hybrid Monte Carlo method
The classical XXZ triangular-lattice antiferromagnet (TAF) shows both an Ising and a BKT transition, related to the chirality and the in-plane spin components, respectively. In this paper the quantum effects on the thermodynamic quantities are evalua