ترغب بنشر مسار تعليمي؟ اضغط هنا

Raman studies of nearly half-metallic ferromagnet CoS2

131   0   0.0 ( 0 )
 نشر من قبل Sergei Stishov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measured the Raman spectra of ferromagnetic nearly half metal CoS2 in a broad temperature range. All five Raman active modes Ag, Eg, Tg(1), Tg(2) and Tg(3) were observed. The magnetic ordering is indicated by a change of the temperature dependences of the frequency and the line width of Ag and T g(2) modes at the Curie point. The temperature dependence of the frequencies and linewidths of the Ag, Eg, Tg(1), T g(2) modes in the paramagnetic phase can be described in the framework of the Klemens approach. Hardening of the Tg(2), Tg(1) and A g modes on cooling can be unambiguously seen in the ferromagnetic phase. The linewidths of Tg(2) and Ag modes behave a natural way at low exciting laser power (decrease with decreasing temperature) in the ferromagnetic phase. At high exciting laser power the corresponding linewidths increase at temperature decreasing below the Curie temperature. Then as can be seen the line width of Ag mode reaches a maxima at about 80K. This intriging feature probably signifies a specific channel of the optical phonon decay in the ferromagnetic phase of CoS2. Tentative explanations of some of the observed effects are given, taking into account the nearly half metallic nature of CoS2.



قيم البحث

اقرأ أيضاً

We consider electron transport in a nearly half-metallic ferromagnet, in which the minority spin electrons close to the band edge at the Fermi energy are Anderson-localized due to disorder. For the case of spin-flip scattering of the conduction elect rons due to the absorption and emission of magnons, the Boltzmann equation is exactly soluble to the linear order. From this solution we calculate the temperature dependence of the resistivity due to single magnon processes at sufficiently low temperature, namely $k_BTll D/L^2$, where $L$ is the Anderson localization length and $D$ is the magnon stiffness. And depending on the details of the minority spin density of states at the Fermi level, we find a $T^{1.5}$ or $T^{2}$ scaling behavior for resistivity. Relevance to the doped perovskite manganite systems is discussed.
98 - Y. Fujita , Y. Miura , T. Sasaki 2021
We study spin-scattering asymmetry at the interface of two ferromagnets (FMs) based on a half-metallic Co$_{2}$Fe$_{0.4}$Mn$_{0.6}$Si (CFMS)/CoFe interface. First-principles ballistic transport calculations based on Landauer formula for (001)-CoFe/CF MS/CoFe indicate strong spin-dependent conductance at the CFMS/CoFe interface, suggesting large interface spin-scattering asymmetry coefficient ($gamma$). Fully epitaxial current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo spin-valve (PSV) devices involving CoFe/CFMS/Ag/CFMS/CoFe structures exhibit an enhancement in magnetoresistance output owing to the formation of the CFMS/CoFe interface at room temperature (RT). This is well reproduced qualitatively by a simulation based on a generalized two-current series-resistor model with taking the presence of $gamma$ at the CFMS/CoFe interface, half-metallicity of CFMS, and combinations of terminated atoms at the interfaces in the CPP-GMR PSV structure. We show direct evidence for large $gamma$ at a half-metallic FM/FM interface and its impact on CPP-GMR effect even at RT.
Using density functional theory we have performed theoretical investigations of the electronic properties of a free-standing one-dimensional organometallic vanadium-benzene wire. This system represents the limiting case of multi-decker V_n(C6H6)_{n+1 } clusters which can be synthesized. We predict that the ground state of the wire is a 100% spin-polarized ferromagnet (half-metal). Its density of states is metallic at the Fermi energy for the minority electrons and shows a semiconductor gap for the majority electrons. We found that the half-metallic behavior is conserved up to 12%, longitudinal elongation of the wire. However, under further stretching, the system exhibits a transition to a high-spin ferromagnetic state that is accompanied by an abrupt jump of the magnetic moment and a gain of exchange energy.
We demonstrate that combining standing-wave (SW) excitation with resonant inelastic x-ray scattering (RIXS) can lead to depth resolution and interface sensitivity for studying orbital and magnetic excitations in correlated oxide heterostructures. SW- RIXS has been applied to multilayer heterostructures consisting of a superconductor La$_{1.85}$Sr$_{0.15}$CuO$_{4}$(LSCO) and a half-metallic ferromagnet La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ (LSMO). Easily observable SW effects on the RIXS excitations were found in these LSCO/LSMO multilayers. In addition, we observe different depth distribution of the RIXS excitations. The magnetic excitations are found to arise from the LSCO/LSMO interfaces, and there is also a suggestion that one of the dd excitations comes from the interfaces. SW-RIXS measurements of correlated-oxide and other multilayer heterostructures should provide unique layer-resolved insights concerning their orbital and magnetic excitations, as well as a challenge for RIXS theory to specifically deal with interface effects.
An ideal Weyl semimetal with a single pair of Weyl points (WPs) may be generated by splitting a single Dirac point (DP) through the breaking of time-reversal symmetry by magnetic order. However, most known Dirac semimetals possess a pair of DPs along an axis that is protected by crystalline symmetry. Here, we demonstrate that a single pair of WPs may also be generated from a pair of DPs. Using first-principles band structure calculations, we show that inducing ferromagnetism in the AFM Dirac semimetal EuCd2As2 generates a single pair of WPs due to its half-metallic nature. Analysis with a low-energy effective Hamiltonian shows that this ideal Weyl semimetal is obtained in EuCd2As2 because the DPs are very close to the zone center and the ferromagnetic exchange splitting is large enough to push one pair of WPs to merge and annihilate at Gamma while the other pair survives. Furthermore, we predict that alloying with Ba at the Eu site can stabilize the ferromagnetic configuration and generate a single pair of Weyl points without application of a magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا