ﻻ يوجد ملخص باللغة العربية
We investigate the interplay of the electron-phonon and the spin fluctuation interaction for the superconducting state of YBa$_2$Cu$_3$O$_{7}$. The spin fluctuations are described within the nearly antiferromagnetic Fermi liquid theory, whereas the phonons are treated using a shell model calculation of all phonon branches. The electron-phonon coupling is calculated using rigidly displaced ionic potentials screened by a background dielectric constant $epsilon_infty$ and by holes within the CuO$_2$ planes. Taking into account both interactions we get a superconducting state with $d_{x^2-y^2}$-symmetry, whose origin are antiferromagnetic spin fluctuations. The investigation of all phonon modes of the system shows that the phononic contribution to the d-wave pairing interaction is attractive. This is a necessary prerequisite for a positive isotope effect. The size of the isotope exponent depends strongly on the relative strength of the electron-phonon and spin fluctuation coupling. Due to the strong electronic correlations no phononic induced superconducting state, which is always of s-wave character, is possible.
A microscopic Hamiltonian reflecting the correct symmetry of $f$-orbitals is proposed to discuss superconductivity in heavy fermion systems. In the orbitally degenerate region in which not only spin fluctuations but also orbital fluctuations develop
Laser control of solids was so far mainly discussed in the context of strong classical nonlinear light-matter coupling in a pump-probe framework. Here we propose a quantum-electrodynamical setting to address the coupling of a low-dimensional quantum
Unconventional superconductivity is commonly linked to electronic pairing mechanisms, since it is believed that the conventional electron-phonon interaction (EPI) cannot cause sign-changing superconducting gap symmetries. Here, we show that this comm
We discuss the possibility of superconductivity in graphene taking into account both electron-phonon and electron-electron Coulomb interactions. The analysis is carried out assuming that the Fermi energy is far away from the Dirac points, such that t
The effect of the resonance of electron scattering energy difference and phonon energy on the electron-phonon-electron interaction (EPEI) is studied. Results show that the resonance of electron transition energy and phonon energy can enhance EPEI by