ﻻ يوجد ملخص باللغة العربية
Laser control of solids was so far mainly discussed in the context of strong classical nonlinear light-matter coupling in a pump-probe framework. Here we propose a quantum-electrodynamical setting to address the coupling of a low-dimensional quantum material to quantized electromagnetic fields in quantum cavities. Using a protoypical model system describing FeSe/SrTiO$_3$ with electron-phonon long-range forward scattering, we study how the formation of phonon polaritons at the 2D interface of the material modifies effective couplings and superconducting properties in a Migdal-Eliashberg simulation. We find that through highly polarizable dipolar phonons, large cavity-enhanced electron-phonon couplings are possible but superconductivity is not enhanced for the forward-scattering pairing mechanism due to the interplay between coupling enhancement and mode softening. An analysis of critical temperature dependencies on couplings and mode frequencies suggests that that cavity-enhanced superconductivity is possible for more conventional short-range pairing mechanisms. Our results demonstrate that quantum cavities enable the engineering of fundamental couplings in solids paving the way to unprecedented control of material properties.
We investigate the interplay of the electron-phonon and the spin fluctuation interaction for the superconducting state of YBa$_2$Cu$_3$O$_{7}$. The spin fluctuations are described within the nearly antiferromagnetic Fermi liquid theory, whereas the p
Phonon measurements in the A15-type superconductors were complicated in the past because of the unavailability of large single crystals for inelastic neutron scattering, e.g., in the case of Nb$_3$Sn, or unfavorable neutron scattering properties in t
We present a detailed study on the influence of strong electron-phonon coupling to the photoemission spectra of lead. Representing the strong-coupling regime of superconductivity, the spectra of lead show characteristic features that demonstrate the
Interface charge transfer and electron-phonon coupling have been suggested to play a crucial role in the recently discovered high-temperature superconductivity of single unit-cell FeSe films on SrTiO3. However, their origin remains elusive. Here, usi
We report first principles calculations of the electronic structure, phonon dispersions and electron phonon coupling of LaNiPO. These calculations show that this material can be explained as a conventional electron phonon superconductor in contrast to the FeAs based high temperature superconductors.