ﻻ يوجد ملخص باللغة العربية
For spin one atoms localized in a quadrapole magnetic field gradient, the atoms may be impeded from spin flipping their way out from the center of the trap by the application of a rotating uniform magnetic field. From a quantum mechanical viewpoint, such a trap for a Bose condensate is equivalent to having a superfluid in a rotating bucket. Vorticity is then expected to be induced in the condensate fluid flow without the application of any further external perturbations.
In superfluid $^3$He-B externally pumped quantized spin-wave excitations or magnons spontaneously form a Bose-Einstein condensate in a 3-dimensional trap created with the order-parameter texture and a shallow minimum in the polarizing field. The cond
Motivated by recent observations of phase-segregated binary Bose-Einstein condensates, we propose a method to calculate the excess energy due to the interface tension of a trapped configuration. By this method one should be able to numerically reprod
Superfluid phenomena can be explained in terms of the topologies of the order parameter and of the confining vessel. For example, currents in a toroidal vessel can be characterized by a discrete and conserved quantity, the winding number. In trapped
Cold atom developments suggest the prospect of measuring scaling properties and long-range fluctuations of continuous phase transitions at zero-temperature. We discuss the conditions for characterizing the phase separation of Bose-Einstein condensate
We consider a two-component Bose-Einstein condensate (BEC) in a ring trap in a rotating frame, and show how to determine the response of such a configuration to being in a rotating frame, via accumulation of a Sagnac phase. This may be accomplished e