ﻻ يوجد ملخص باللغة العربية
We consider a two-component Bose-Einstein condensate (BEC) in a ring trap in a rotating frame, and show how to determine the response of such a configuration to being in a rotating frame, via accumulation of a Sagnac phase. This may be accomplished either through population oscillations, or the motion of spatial density fringes. We explicitly include the effect of interactions via a mean-field description, and study the fidelity of the dynamics relative to an ideal configuration.
We experimentally investigate the dynamics of spin solitary waves (magnetic solitons) in a harmonically trapped, binary superfluid mixture. We measure the in-situ density of each pseudospin component and their relative local phase via an interferomet
We present a self-consistent study of coherently coupled two-component Bose-Einstein condensates. Finite spin-flipping coupling changes the first order demixing phase transition for Bose-Bose mixtures to a second order phase transition between an unp
The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled se
We investigate the mean--field equilibrium solutions for a two--species immiscible Bose--Einstein condensate confined by a harmonic confinement with additional linear perturbations. We observe a range of equilibrium density structures, including `bal
Equilibrium vortex formation in rotating binary Bose gases with a rotating frequency higher than the harmonic trapping frequency is investigated theoretically. We consider the system being evaporatively cooled to form condensates and a combined numer