ﻻ يوجد ملخص باللغة العربية
The extended Hubbard model in the atomic limit (AL-EHM) on a square lattice with periodic boundary conditions is studied with use of the Monte Carlo (MC) method. Within the grand canonical ensemble the phase and order-order boundaries for charge orderings are obtained. The phase diagrams include three types of charge ordered phases and the nonordered phase. The system exhibits very rich structure and shows unusual multicritical behavior. In the limiting case of tij = 0, the EHM is equivalent to the pseudospin model with single-ion anisotropy 1/2U, exchange interaction W in an effective magnetic field (mu-1/2U-zW). This classical spin model is analyzed using the MC method for the canonical ensemble. The phase diagram is compared with the known results for the Blume-Capel model.
A simple effective model of charge ordered and (or) magnetically ordered insulators is studied. The tight binding Hamiltonian analyzed consists of (i) the effective on-site interaction U, (ii) the intersite density-density interaction W and (iii) int
In this paper we present for the first time the exact solution in the narrow-band limit of the 1D extended Hubbard model with nearest-neighbour spin-spin interactions described by an exchange constant J. An external magnetic field h is also taken int
We investigate the dynamical spin and charge structure factors and the one-particle spectral function of the one-dimensional extended Hubbard model at half band-filling using the dynamical density-matrix renormalization group method. The influence of
The high-temperature superconducting cuprates are governed by intertwined spin, charge, and superconducting orders. While various state-of-the-art numerical methods have demonstrated that these phases also manifest themselves in doped Hubbard models,
We investigate the competition between charge-density-wave (CDW) states and a Coulomb interaction-driven topological Mott insulator (TMI) in the honeycomb extended Hubbard model. For the spinful model with on-site ($U$) and next-nearest-neighbor ($V_