ﻻ يوجد ملخص باللغة العربية
The high-temperature superconducting cuprates are governed by intertwined spin, charge, and superconducting orders. While various state-of-the-art numerical methods have demonstrated that these phases also manifest themselves in doped Hubbard models, they differ on which is the actual ground state. Finite cluster methods typically indicate that stripe order dominates while embedded quantum cluster methods, which access the thermodynamic limit by treating long-range correlations with a dynamical mean field, conclude that superconductivity does. Here, we report the observation of fluctuating spin and charge stripes in the doped single-band Hubbard model using a quantum Monte Carlo dynamical cluster approximation (DCA) method. By resolving both the fluctuating spin and charge orders using DCA, we demonstrate for the first time that they survive in the doped Hubbard model in the thermodynamic limit. This discovery also provides a new opportunity to study the influence of fluctuating stripe correlations on the models pairing correlations within a unified numerical framework.
We consider the repulsive Hubbard model in one dimension and show the different mechanisms present in the charge and spin separation phenomena for an electron, at half filling and bellow half filling. We also comment recent experimental results.
We study the competition between stripe states with different periods and a uniform $d$-wave superconducting state in the extended 2D Hubbard model at 1/8 hole doping using infinite projected entangled-pair states (iPEPS). With increasing strength of
The dualism between superconductivity and charge/spin modulations (the so-called stripes) dominates the phase diagram of many strongly-correlated systems. A prominent example is given by the Hubbard model, where these phases compete and possibly coex
We consider the one-band Hubbard model on the square lattice by using variational and Greens function Monte Carlo methods, where the variational states contain Jastrow and backflow correlations on top of an uncorrelated wave function that includes BC
In a recent paper, Phys. Rev. Lett. 87, 167010/1-4 (2001), Moukouri and Jarrell presented evidence that in the two-dimensional (d=2) Hubbard model at half-filling there is a metal-insulator transition (MIT) at finite temperature even in weak coupling