ﻻ يوجد ملخص باللغة العربية
One-dimensional gapped systems are often characterized by a hidden non-local order parameter, the so-called string order. Due to the gap, thermodynamic properties are robust against a weak higher-dimensional coupling between such chains or ladders. To the contrary, we find that the string order is not stable and decays for arbitrary weak inter-chain or inter-ladder coupling. We investigate the vanishing of the order for three different systems: spin-one Haldane chains, band insulators, and the transverse-field Ising model. Using perturbation theory and bosonization, we show that the fragility of the string order arises from non-local commutation relations between the non-local order parameter and the perturbation.
We present a general formalism that allows for the computation of large-order renormalized expansions in the spacetime representation, effectively doubling the numerically attainable perturbation order of renormalized Feynman diagrams. We show that t
Field-induced excitation gaps in quantum spin chains are an interesting phenomenon related to confinements of topological excitations. In this paper, I present a novel type of this phenomenon. I show that an effective magnetic field with a fourfold s
Volborthite offers an interesting example of a highly frustrated quantum magnet in which ferromagnetic and antiferromagnetic interactions compete on anisotropic kagome lattices. A recent density functional theory calculation has provided a magnetic m
We classify subsystem symmetry-protected topological (SSPT) phases in $3+1$D protected by planar subsystem symmetries, which are dual to abelian fracton topological orders. We distinguish between weak SSPTs, which can be constructed by stacking $2+1$
We show that the existence of string order in a given quantum state is intimately related to the presence of a local symmetry by proving that both concepts are equivalent within the framework of finitely correlated states. Once this connection is est