ﻻ يوجد ملخص باللغة العربية
Field-induced excitation gaps in quantum spin chains are an interesting phenomenon related to confinements of topological excitations. In this paper, I present a novel type of this phenomenon. I show that an effective magnetic field with a fourfold screw symmetry induces the excitation gap accompanied by dimer orders. The gap and dimer orders induced so exhibit characteristic power-law dependence on the fourfold screw-symmetric field. Moreover, the field-induced dimer order and the field-induced Neel order coexist when the external uniform magnetic field, the fourfold screw-symmetric field, and the twofold staggered field are applied. This situation is in close connection with a compound [Cu(pym)(H$_2$O)$_4$]SiF$_6$ [J. Liu et al., Phys. Rev. Lett. 122, 057207 (2019)]. In this paper, I discuss a mechanism of field-induced dimer orders by using a density-matrix renormalization group method, a perturbation theory, and quantum field theories.
Dynamics of S=1 antiferromagnetic bond-alternating chains in the dimer phase, in the vicinity of the critical point with the Haldane phase, is studied by a field theoretical method. This model is considered to represent the compound Ni(C$_9$H$_{24}$N
We study quantum phase transitions between competing orders in one-dimensional spin systems. We focus on systems that can be mapped to a dual-field double sine-Gordon model as a bosonized effective field theory. This model contains two pinning potent
We show that a chain of Heisenberg spins interacting with long-range dipolar forces in a magnetic field h perpendicular to the chain exhibits a quantum critical point belonging to the two-dimensional Ising universality class. Within linear spin-wave
Many-body systems with multiple emergent time scales arise in various contexts, including classical critical systems, correlated quantum materials, and ultra-cold atoms. We investigate such non-trivial quantum dynamics in a new setting: a spin-1 bili
We discuss how quantum dimer models may be used to provide proofs of principle for the existence of exotic magnetic phases in quantum spin systems.