ﻻ يوجد ملخص باللغة العربية
We propose to detect non-Markovian decay of an exciton qubit coupled to multi-mode bosonic reservoir via shot-noise measurements. Non-equilibrium current noise is calculated for a quantum dot embedded inside a QTR{it}{p-i-n} junction. An additional term from non-Markovian effect is obtained in the derivation of noise spectrum. As examples, two practical photonic reservoirs, photon vacuum with the inclusion of cut-off frequency and surface plasmons, are given to show that the noise may become super-Poissonian due to this non-Markovian effect. Utilizing the property of super-radiance is further suggested to enhance the noise value.
We study a dynamic mechanism to passively suppress the thermal noise of a micromechanical resonator through an intrinsic self-feedback that is genuinely non-Markovian. We use two coupled resonators, one as the target resonator and the other as an anc
We present a formalism for calculating the non-symmetrized quantum current noise within the Born-Markov approximation for the master equation. The formalism is particularly well suited to obtaining the current noise for quantum transport in mesoscopi
We study the dynamics of a nanomechanical resonator (NMR) subject to a measurement by a low transparency quantum point contact (QPC) or tunnel junction in the non-Markovian domain. We derive the non-Markovian number-resolved (conditional) and uncondi
A bound state between a quantum emitter (QE) and surface plasmon polaritons (SPPs) can be formed, where the QE is partially stabilized in its excited state. We put forward a general approach for calculating the energy level shift at a negative freque
Estimating the features of noise is the first step in a chain of protocols that will someday lead to fault tolerant quantum computers. The randomised benchmarking (RB) protocol is designed with this exact mindset, estimating the average strength of n