ﻻ يوجد ملخص باللغة العربية
We study a dynamic mechanism to passively suppress the thermal noise of a micromechanical resonator through an intrinsic self-feedback that is genuinely non-Markovian. We use two coupled resonators, one as the target resonator and the other as an ancillary resonator, to illustrate the mechanism and its noise reduction effect. The intrinsic feedback is realized through the dynamics of coupling between the two resonators: the motions of the target resonator and the ancillary resonator mutually influence each other in a cyclic fashion. Specifically, the states that the target resonator has attained earlier will affect the state it attains later due to the presence of the ancillary resonator. We show that the feedback mechanism will bring forth the effect of noise suppression in the spectrum of displacement, but not in the spectrum of momentum.
Micro and nanomechanical resonators with ultra-low dissipation have great potential as useful quantum resources. The superfluid micromechanical resonators presented here possess several advantageous characteristics: straightforward thermalization, di
Autonomous oscillators, such as clocks and lasers, produce periodic signals emph{without} any external frequency reference. In order to sustain stable periodic motions, there needs to be external energy supply as well as nonlinearity built into the o
We propose to detect non-Markovian decay of an exciton qubit coupled to multi-mode bosonic reservoir via shot-noise measurements. Non-equilibrium current noise is calculated for a quantum dot embedded inside a QTR{it}{p-i-n} junction. An additional t
The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high quality single-crystal diamond resonators h
We demonstrate unconditional quantum-noise suppression in a collective spin system via feedback control based on quantum non-demolition measurement (QNDM). We perform shot-noise limited collective spin measurements on an ensemble of $3.7times 10^5$ l