ﻻ يوجد ملخص باللغة العربية
Estimating the features of noise is the first step in a chain of protocols that will someday lead to fault tolerant quantum computers. The randomised benchmarking (RB) protocol is designed with this exact mindset, estimating the average strength of noise in a quantum processor with relative ease in practice. However, RB, along with most other benchmarking and characterisation methods, is limited in scope because it assumes that the noise is temporally uncorrelated (Markovian), which is increasingly evident not to be the case. Here, we combine the RB protocol with a recent framework describing non-Markovian quantum phenomena to derive a general analytical expression of the average sequence fidelity (ASF) for non-Markovian RB with the Clifford group. We show that one can identify non-Markovian features of the noise directly from the ASF through its deviations from the Markovian case, proposing a set of methods to collectively estimate these deviations, non-Markovian memory time-scales, and diagnose (in)coherence of non-Markovian noise in an RB experiment. Finally, we demonstrate the efficacy of our proposal by means of several proof-of-principle examples. Our methods are directly implementable and pave the pathway to better understanding correlated noise in quantum processors.
With continuing improvements on the quality of fabricated quantum devices, it becomes increasingly crucial to analyze noisy quantum process in greater details such as characterizing the non-Markovianity in a quantitative manner. In this work, we prop
The ping-pong protocol adapted for quantum key distribution is studied in the trusted quantum noise scenario, wherein the legitimate parties can add noise locally. For a well-studied attack model, we show how non-unital quantum non-Markovianity of th
The non-Markovian nature of quantum systems recently turned to be a key subject for investigations on open quantum system dynamics. Many studies, from its theoretical grounding to its usefulness as a resource for quantum information processing and ex
Distilling precise estimates from noisy intermediate scale quantum (NISQ) data has recently attracted considerable attention. In order to augment digital qubit metrics, such as gate fidelity, we discuss analog error mitigability, i.e. the ability to
It is by now well established that noise itself can be useful for performing quantum information processing tasks. We present results which show how one can effectively reduce the error rate associated with a noisy quantum channel, by counteracting i