ﻻ يوجد ملخص باللغة العربية
Combining analytical and numerical methods, we study within the framework of the homogeneous non-linear Boltzmann equation, a broad class of models relevant for the dynamics of dissipative fluids, including granular gases. We use the new method presented in a previous paper [J. Stat. Phys. 124, 549 (2006)] and extend our results to a different heating mechanism, namely a deterministic non-linear friction force. We derive analytically the high energy tail of the velocity distribution and compare the theoretical predictions with high precision numerical simulations. Stretched exponential forms are obtained when the non-equilibrium steady state is stable. We derive sub-leading corrections and emphasize their relevance. In marginal stability cases, power-law behaviors arise, with exponents obtained as the roots of transcendental equations. We also consider some simple BGK (Bhatnagar, Gross, Krook) models, driven by similar heating devices, to test the robustness of our predictions.
The solutions of the one-dimensional homogeneous nonlinear Boltzmann equation are studied in the QE-limit (Quasi-Elastic; infinitesimal dissipation) by a combination of analytical and numerical techniques. Their behavior at large velocities differs q
The algorithm for Dissipative Particle Dynamics (DPD), as modified by Espagnol and Warren, is used as a starting point for proving an H-theorem for the free energy and deriving hydrodynamic equations. Equilibrium and transport properties of the DPD f
An intriguing phenomenon displayed by granular flows and predicted by kinetic-theory-based models is the instability known as particle clustering, which refers to the tendency of dissipative grains to form transient, loose regions of relatively high
A self-consistent and universal description of friction and diffusion for Brownian particles (grains) in different systems, as a gas with Boltzmann collisions, dusty plasma with ion absorption by grains, and for active particles (e.g., cells in biolo
We connect two different generalizations of Boltzmanns kinetic theory by requiring the same stationary solution. Non-extensive statistics can be produced by either using corresponding collision rates nonlinear in the one-particle densities or equival