ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure and optical properties of alpha- and gamma-cerium sesquisulfide

61   0   0.0 ( 0 )
 نشر من قبل R. Windiks
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Structural and electronic properties of the alpha- and gamma-phases of cerium sesquisulfide, Ce2S3, are examined by first-principles calculations using the GGA+U extension of density functional theory. The strongly correlated f-electrons of Ce are described by a Hubbard-type on-site Coulomb repulsion parameter. A single parameter of $U^/prime$=4 eV yields excellent results for crystal structures, band gaps, and thermodynamic stability for both Ce2S3 allotropes. This approach gives insights in the difference in color of brownish-black alpha-Ce2S3 and dark red gamma-Ce2S3. The calculations predict that both Ce2S3 modifications are insulators with optical gaps of 0.8 eV (alpha-phase) and 1.8 eV (gamma-phase). The optical gaps are determined by direct electronic excitations at k=Gamma from localized and occupied Ce 4f-orbitals into empty Ce 5d-states. The f-states are situated between the valence and conduction bands. The difference of 1 eV between the optical gaps of the two Ce2S3 modifications is explained by different coordinations of the cerium cations by sulfur anions. For both Ce2S3 modifications the calculations yield an effective local magnetic moment of 2.6 $mu_B$ per cerium cation, which is in agreement with measurements. The electronic energy of the alpha-phase is computed to be 6 kJ/mol lower than that of the gamma-phase, which is consistent with the thermodynamic stability of the two allotropes.



قيم البحث

اقرأ أيضاً

116 - H. Sakurai , N. Tsujii , 2004
We have performed specific heat and electric resistivity measurements of Na$_{x}$CoO$_{2}$ ($x=0.70$-0.78). Two anomalies have been observed in the specific heat data for $x=0.78$, corresponding to magnetic transitions at $T_{c}=22$ K and $T_{k}simeq 9$ K reported previously. In the electrical resistivity, a steep decrease at $T_{c}$ and a bending-like variation at $T_{b}$(=120K for $x=0.78$) have been observed. Moreover, we have investigated the $x$-dependence of these parameters in detail. The physical properties of this system are very sensitive to $x$, and the inconsistent results of previous reports can be explained by a small difference in $x$. Furthermore, for a higher $x$ value, a phase separation into Na-rich and Na-poor domains occurs as we previously proposed, while for a lower $x$ value, from characteristic behaviors of the specific heat and the electrical resistivity at the low-temperature region, the system is expected to be in the vicinity of the magnetic instability which virtually exists below $x=0.70$.
Powder Na$_{x}$CoO$_{2}$ ($0.70leq xleq 0.84$) samples were synthesized and characterized carefully by X-ray diffraction analysis, inductive-coupled plasma atomic emission spectroscopy, and redox titration. It was proved that $gamma$-Na$_{x}$CoO$_{2} $ is formed only in the narrow range of $0.70leq xleq 0.78$. Nevertheless, the magnetic properties depend strongly on $x$. We found, for the first time, two characteristic features in the magnetic susceptibility of Na$_{0.78}$CoO$_{2}$, a sharp peak at $T_{p}=16$ K and an anomaly at $T_{k}=9$ K, as well as the transition at $T_{c}=22$ K and the broad maximum at $T_{m}=50$ K which had already been reported. A type of weak ferromagnetic transition seems to occur at $T_{k}$. The transition at $T_{c}$, which is believed to be caused by spin density wave formation, was observed clearly for $xgeq 0.74$ with constant $T_{c}$ and $T_{p}$ independent of $x$. On the other hand, ferromagnetic moment varies systematically depending on $x$. These facts suggest the occurrence of a phase separation at the microscopic level, such as the separation into Na-rich and Na-poor domains due to the segregation of Na ions. The magnetic phase diagram and transition mechanism proposed previously should be reconsidered.
We present a study of the electronic and magnetic properties of the multiple-decker sandwich nanowires ($CP-M$) composed of cyclopentadienyl (CP) rings and 3d transition metal atoms (M=Ti to Ni) using first-principles techniques. We demonstrate using Density Functional Theory that structural relaxation play an important role in determining the magnetic ground-state of the system. Notably, the computed magnetic moment is zero in $CP-Mn$, while in $CP-V$ a significant turn-up in magnetic moment is evidenced. Two compounds show a half-metallic ferromagnetic ground state $CP-Fe/Cr$ with a gap within minority/majority spin channel. In order to study the effect of electronic correlations upon the half-metallic ground states in $CP-Cr$, we introduce a simplified three-bands Hubbard model which is solved within the Variational Cluster Approach. We discuss the results as a function of size of the reference cluster and the strength of average Coulomb $U$ and exchange $J$ parameters. Our results demonstrate that for the range of studied parameters $U=2-4eV$ and $J=0.6-1.2eV$ the half-metallic character is not maintained in the presence of local Coulomb interactions.
Huge deformations of the crystal lattice can be achieved in materials with inherent structural instability by epitaxial straining. By coherent growth on seven different substrates the in-plane lattice constants of 50 nm thick Fe70Pd30 films are conti nuously varied. The maximum epitaxial strain reaches 8,3 % relative to the fcc lattice. The in-plane lattice strain results in a remarkable tetragonal distortion ranging from c/abct = 1.09 to 1.39, covering most of the Bain transformation path from fcc to bcc crystal structure. This has dramatic consequences for the magnetic key properties. Magnetometry and X-ray circular dichroism (XMCD) measurements show that Curie temperature, orbital magnetic moment, and magnetocrystalline anisotropy are tuned over broad ranges.
323 - Johannes Mendil 2019
We report on the structure, magnetization, magnetic anisotropy, and domain morphology of ultrathin yttrium iron garnet (YIG)/Pt films with thickness ranging from 3 to 90 nm. We find that the saturation magnetization is close to the bulk value in the thickest films and decreases towards low thickness with a strong reduction below 10 nm. We characterize the magnetic anisotropy by measuring the transverse spin Hall magnetoresistance as a function of applied field. Our results reveal strong easy plane anisotropy fields of the order of 50-100 mT, which add to the demagnetizing field, as well as weaker in-plane uniaxial anisotropy ranging from 10 to 100 $mu$T. The in-plane easy axis direction changes with thickness, but presents also significant fluctuations among samples with the same thickness grown on the same substrate. X-ray photoelectron emission microscopy reveals the formation of zigzag magnetic domains in YIG films thicker than 10 nm, which have dimensions larger than several 100 $mu$m and are separated by achiral N{e}el-type domain walls. Smaller domains characterized by interspersed elongated features are found in YIG films thinner than 10 nm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا