ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthesis, Characterization, and Magnetic Properties of gamma-NaxCoO2 (0.70 < x <0.84)

68   0   0.0 ( 0 )
 نشر من قبل Hiroya Sakurai
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Powder Na$_{x}$CoO$_{2}$ ($0.70leq xleq 0.84$) samples were synthesized and characterized carefully by X-ray diffraction analysis, inductive-coupled plasma atomic emission spectroscopy, and redox titration. It was proved that $gamma$-Na$_{x}$CoO$_{2}$ is formed only in the narrow range of $0.70leq xleq 0.78$. Nevertheless, the magnetic properties depend strongly on $x$. We found, for the first time, two characteristic features in the magnetic susceptibility of Na$_{0.78}$CoO$_{2}$, a sharp peak at $T_{p}=16$ K and an anomaly at $T_{k}=9$ K, as well as the transition at $T_{c}=22$ K and the broad maximum at $T_{m}=50$ K which had already been reported. A type of weak ferromagnetic transition seems to occur at $T_{k}$. The transition at $T_{c}$, which is believed to be caused by spin density wave formation, was observed clearly for $xgeq 0.74$ with constant $T_{c}$ and $T_{p}$ independent of $x$. On the other hand, ferromagnetic moment varies systematically depending on $x$. These facts suggest the occurrence of a phase separation at the microscopic level, such as the separation into Na-rich and Na-poor domains due to the segregation of Na ions. The magnetic phase diagram and transition mechanism proposed previously should be reconsidered.

قيم البحث

اقرأ أيضاً

116 - H. Sakurai , N. Tsujii , 2004
We have performed specific heat and electric resistivity measurements of Na$_{x}$CoO$_{2}$ ($x=0.70$-0.78). Two anomalies have been observed in the specific heat data for $x=0.78$, corresponding to magnetic transitions at $T_{c}=22$ K and $T_{k}simeq 9$ K reported previously. In the electrical resistivity, a steep decrease at $T_{c}$ and a bending-like variation at $T_{b}$(=120K for $x=0.78$) have been observed. Moreover, we have investigated the $x$-dependence of these parameters in detail. The physical properties of this system are very sensitive to $x$, and the inconsistent results of previous reports can be explained by a small difference in $x$. Furthermore, for a higher $x$ value, a phase separation into Na-rich and Na-poor domains occurs as we previously proposed, while for a lower $x$ value, from characteristic behaviors of the specific heat and the electrical resistivity at the low-temperature region, the system is expected to be in the vicinity of the magnetic instability which virtually exists below $x=0.70$.
GdCo$_5$ may be considered as two sublattices - one of Gd and one of Co - whose magnetizations are in antiparallel alignment, forming a ferrimagnet. Substitution of nickel in the cobalt sublattice of GdCo$_5$ has been investigated to gain insight int o how the magnetic properties of this prototype rare-earth/transition-metal magnet are affected by changes in the transition metal sublattice. Polycrystalline samples of GdCo$_{5-x}$Ni$_x$ for 0 $ leq x leq $ 5 were synthesized by arc melting. Structural characterization was carried out by powder x-ray diffraction and optical and scanning electron microscope imaging of metallographic slides, the latter revealing a low concentration of Gd$_2$(Co, Ni)$_7$ lamellae for $x leq 2.5$. Compensation - i.e. the cancellation of the opposing Gd and transition metal moments is observed for $1 leq x leq 3$ at a temperature which increases with Ni content; for larger $x$, no compensation is observed below 360 K. A peak in the coercivity is seen at $x approx 1$ at 10K coinciding with a minimum in the saturation magnetization. Density-functional theory calculations within the disordered local moment picture reproduce the dependence of the magnetization on Ni content and temperature. The calculations also show a peak in the magnetocrystalline anisotropy at similar Ni concentrations to the experimentally observed coercivity maximum.
Orthorhombic Y$_{1-x}$Ca$_x$MnO$_3$ ($0 leq x leq 0.5$) was prepared under high pressure and the variations with $x$ of its structural, magnetic, electrical properties and the polarized Raman spectra were investigated. The lattice parameters change s ystematically with $x$. Although there are strong indications for increasing disorder above $x = 0.20$, the average structure remains orthorhombic in the whole substitutional range. Ca doping increases conductivity, but temperature dependence of resistivity $rho$(T) remains semiconducting for all $x$. The average magnetic exchange interaction changes from antiferromagnetic for $x < 0.08$ to ferromagnetic for $x > 0.08$. The evolution with $x$ of the Raman spectra provides evidence for increasingly disordered oxygen sublattice at $x geq 0.10$, presumably due to quasistatic and/or dynamical Jahn-Teller distortions.
Nanocrystalline Al-doped nickel ferrite powders have been synthesized by sol-gel auto-ignition method and the effect of non-magnetic aluminum content on the structural and magnetic properties has been studied. The X-ray diffraction (XRD) revealed tha t the powders obtained are single phase with inverse spinel structure. The calculated grain sizes from XRD data have been verified using transmission electron microscopy (TEM). TEM photographs show that the powders consist of nanometer-sized grains. It was observed that the characteristic grain size decreases from 29 to 6 nm as the non-magnetic Al content increases, which was attributed to the influence of non-magnetic Al concentration on the grain size. Magnetic hysteresis loops were measured at room temperature with a maximum applied magnetic field of 1T. As aluminum content increases, the measured magnetic hysteresis curves become more and more narrow and the saturation magnetization and remanent magnetization both decreased. The reduction of agnetization compared to bulk is a consequence of spin non-collinearity. Further reduction of magnetization with increase of aluminum content is caused by non-magnetic Al^{3+} ions and weakened interaction between sublattices. This, as well as the decrease in hysteresis was understood in terms of the decrease in particle size.
Structural and electronic properties of the alpha- and gamma-phases of cerium sesquisulfide, Ce2S3, are examined by first-principles calculations using the GGA+U extension of density functional theory. The strongly correlated f-electrons of Ce are de scribed by a Hubbard-type on-site Coulomb repulsion parameter. A single parameter of $U^/prime$=4 eV yields excellent results for crystal structures, band gaps, and thermodynamic stability for both Ce2S3 allotropes. This approach gives insights in the difference in color of brownish-black alpha-Ce2S3 and dark red gamma-Ce2S3. The calculations predict that both Ce2S3 modifications are insulators with optical gaps of 0.8 eV (alpha-phase) and 1.8 eV (gamma-phase). The optical gaps are determined by direct electronic excitations at k=Gamma from localized and occupied Ce 4f-orbitals into empty Ce 5d-states. The f-states are situated between the valence and conduction bands. The difference of 1 eV between the optical gaps of the two Ce2S3 modifications is explained by different coordinations of the cerium cations by sulfur anions. For both Ce2S3 modifications the calculations yield an effective local magnetic moment of 2.6 $mu_B$ per cerium cation, which is in agreement with measurements. The electronic energy of the alpha-phase is computed to be 6 kJ/mol lower than that of the gamma-phase, which is consistent with the thermodynamic stability of the two allotropes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا