ﻻ يوجد ملخص باللغة العربية
Brownian motors, i.e. devices able to produce useful work out of thermal forces with the help of other unbiased forces, provide an ideal benchmark for the investigation of quantum dissipative systems, for two reasons. First, the interaction with a dissipative environment plays an essential role in the performance of Brownian motors. Second, dissipative tunneling enriches the dynamics of quantum Brownian motors with respect to their classical counterpart, inducing features such as current reversals as a function of temperature. Here we report on our work on quantum Brownian motors and discuss the load characteristic of such a system.
Different proposals for adiabatic quantum motors (AQMs) driven by DC currents have recently attracted considerable interest. However, the systems studied are often based on simplified models with highly ideal conditions where the environment is negle
Coupling with an external environment inevitably affects the dynamics of a quantum system. Here, we consider how charging performances of a quantum battery, modelled as a two level system, are influenced by the presence of an Ohmic thermal reservoir.
We theoretically investigate basic properties of nonequilibrium steady states of periodically-driven open quantum systems based on the full solution of the Maxwell-Bloch equation. In a resonantly driving condition, we find that the transverse relaxat
We investigate the time evolution of an open quantum system described by a Lindblad master equation with dissipation acting only on a part of the degrees of freedom ${cal H}_0$ of the system, and targeting a unique dark state in ${cal H}_0$. We show
The dynamics of chaotic systems are, by definition, exponentially sensitive to initial conditions and may appear rather random. In this work, we explore relations between the chaotic dynamics of an observable and the dynamics of information (entropy)