ﻻ يوجد ملخص باللغة العربية
We investigate the time evolution of an open quantum system described by a Lindblad master equation with dissipation acting only on a part of the degrees of freedom ${cal H}_0$ of the system, and targeting a unique dark state in ${cal H}_0$. We show that, in the Zeno limit of large dissipation, the density matrix of the system traced over the dissipative subspace ${cal H}_0$, evolves according to another Lindblad dynamics, with renormalized effective Hamiltonian and weak effective dissipation. This behavior is explicitly checked in the case of Heisenberg spin chains with one or both boundary spins strongly coupled to a magnetic reservoir. Moreover, the populations of the eigenstates of the renormalized effective Hamiltonian evolve in time according to a classical Markov dynamics. As a direct application of this result, we propose a computationally-efficient exact method to evaluate the nonequilibrium steady state of a general system in the limit of strong dissipation.
We show that the time evolution of an open quantum system, described by a possibly time dependent Liouvillian, can be simulated by a unitary quantum circuit of a size scaling polynomially in the simulation time and the size of the system. An immediat
Modeling the dynamics of a quantum system connected to the environment is critical for advancing our understanding of complex quantum processes, as most quantum processes in nature are affected by an environment. Modeling a macroscopic environment on
If an open quantum system is initially uncorrelated from its environment, then its dynamics can be written in terms of a Lindblad-form master equation. The master equation is divided into a unitary piece, represented by an effective Hamiltonian, and
We consider the evolution of an arbitrary quantum dynamical semigroup of a finite-dimensional quantum system under frequent kicks, where each kick is a generic quantum operation. We develop a generalization of the Baker-Campbell-Hausdorff formula all
It is well known that the quantum Zeno effect can protect specific quantum states from decoherence by using projective measurements. Here we combine the theory of weak measurements with stabilizer quantum error correction and detection codes. We deri