ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics and decoherence in nonideal Thouless quantum motors

238   0   0.0 ( 0 )
 نشر من قبل Ra\\'ul A. Bustos-Mar\\'un
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Different proposals for adiabatic quantum motors (AQMs) driven by DC currents have recently attracted considerable interest. However, the systems studied are often based on simplified models with highly ideal conditions where the environment is neglected. Here, we investigate the performance (dynamics, efficiency, and output power) of a prototypical AQM, the Thouless motor. To include the effect of the surroundings on this type of AQMs, we extended our previous theory of decoherence in current-induced forces (CIFs) to account for spatially distributed decoherent processes. We provide analytical expressions that account for decoherence in CIFs, friction coefficients and the self-correlation functions of the CIFs. We prove that the model is thermodynamically consistent and we find that decoherence drastically reduces the efficiency of the motor mainly due to the increase in conductance, while its effect on the output power is not much relevant. The effect of decoherence on the current-induced friction depends on the length of the system, reducing the friction for small systems while increasing it for long ones. Finally, we find that reflections of the electrons at the boundary of the system induce additional conservative forces that affect the dynamics of the motor. In particular, this results in the hysteresis of the system and a voltage dependent switching.

قيم البحث

اقرأ أيضاً

Current induced forces are not only related with the discrete nature of electrons but also with its quantum character. It is natural then to wonder about the effect of decoherence. Here, we develop the theory of current induced forces including depha sing processes and we apply it to study adiabatic quantum motors (AQMs). The theory is based on Buttikers fictitious probe model which here is reformulated for this particular case. We prove that it accomplishes fluctuation-dissipation theorem. We also show that, in spite of decoherence, the total work performed by the current induced forces remains equal to the pumped charge per cycle times the voltage. We find that decoherence affects not only the current induced forces of the system but also its intrinsic friction and noise, modifying in a non trivial way the efficiency of AQMs. We apply the theory to study an AQM inspired by a classical peristaltic pump where we surprisingly find that decoherence can play a crucial role by triggering its operation. Our results can help to understand how environmentally induced dephasing affects the quantum behavior of nano-mechanical devices.
In this article we review our work on the dynamics and decoherence of electron and hole spins in single and double quantum dots. The first part, on electron spins, focuses on decoherence induced via the hyperfine interaction while the second part cov ers decoherence and relaxation of heavy-hole spins due to spin-orbit interaction as well as the manipulation of heavy-hole spin using electric dipole spin resonance.
51 - J. Peguiron 2006
Brownian motors, i.e. devices able to produce useful work out of thermal forces with the help of other unbiased forces, provide an ideal benchmark for the investigation of quantum dissipative systems, for two reasons. First, the interaction with a di ssipative environment plays an essential role in the performance of Brownian motors. Second, dissipative tunneling enriches the dynamics of quantum Brownian motors with respect to their classical counterpart, inducing features such as current reversals as a function of temperature. Here we report on our work on quantum Brownian motors and discuss the load characteristic of such a system.
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time (T2) of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the l ongest T2 times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (300 G and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbor spin pairs. Longer neighbor distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer T2 time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.
We demonstrate coherent dynamics of quantized magnetic fluxes in a superconducting loop with a weak link - a nanobridge patterned from the same thin NbN film as the loop. The bridge is a short rounded shape constriction, close to 10 nm long and 20 - 30 nm wide, having minimal width at its center. Quantum state control and coherent oscillations in the driven time evolution of the tunnel-junctionless system are achieved. Decoherence and energy relaxation in the system are studied using a combination of microwave spectroscopy and direct time-domain techniques. The effective flux noise behavior suggests inductance fluctuations as a possible cause of the decoherence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا