ﻻ يوجد ملخص باللغة العربية
Recently the possibility of generating nonclassical polariton states by means of parametric scattering has been demonstrated. Excitonic polaritons propagate in a complex interacting environment and contain real electronic excitations subject to scattering events and noise affecting quantum coherence and entanglement. Here we present a general theoretical framework for the realistic investigation of polariton quantum correlations in the presence of coherent and incoherent interaction processes. The proposed theoretical approach is based on the {em nonequilibrium quantum Langevin approach for open systems} applied to interacting-electron complexes described within the dynamics controlled truncation scheme. It provides an easy recipe to calculate multi-time correlation functions which are key-quantities in quantum optics. As a first application, we analyze the build-up of polariton parametric emission in semiconductor microcavities including the influence of noise originating from phonon induced scattering.
We investigate the interaction between light and molecular systems modeled as quantum emitters coupled to a multitude of vibrational modes via a Holstein-type interaction. We follow a quantum Langevin equations approach that allows for analytical der
We consider exciton-photon coupling in semiconductor microcavities in which separate periodic potentials have been embedded for excitons and photons. We show theoretically that this system supports degenerate ground-states appearing at non-zero in-pl
We study the spin dynamics in charged quantum dots in the situation where the resident electron is coupled to only about 200 nuclear spins and where the electron spin splitting induced by the Overhauser field does not exceed markedly the spectral bro
The dynamics of optical switching in semiconductor microcavities in the strong coupling regime is studied using time- and spatially-resolved spectroscopy. The switching is triggered by polarised short pulses which create spin bullets of high polarito
We present a method to implement 3-dimensional polariton confinement with in-situ spectral tuning of the cavity mode. Our tunable microcavity is a hybrid system consisting of a bottom semiconductor distributed Bragg reflector (DBR) with a cavity cont