ﻻ يوجد ملخص باللغة العربية
Studies of low-frequency resistance noise show that the glassy freezing of the two-dimensional electron system (2DES) in Si in the vicinity of the metal-insulator transition (MIT) persists in parallel magnetic fields B of up to 9 T. At low B, both the glass transition density $n_g$ and $n_c$, the critical density for the MIT, increase with B such that the width of the metallic glass phase ($n_c<n_s<n_g$) increases with B. At higher B, where the 2DES is spin polarized, $n_c$ and $n_g$ no longer depend on B. Our results demonstrate that charge, as opposed to spin, degrees of freedom are responsible for glassy ordering of the 2DES near the MIT.
Large fluctuations of conductivity with time are observed in a low-mobility two-dimensional electron system in silicon at low electron densities $n_s$ and temperatures. A dramatic increase of the noise power ($propto 1/f^{alpha}$) as $n_s$ is reduced
The temperature dependence of conductivity $sigma (T)$ of a two-dimensional electron system in silicon has been studied in parallel magnetic fields B. At B=0, the system displays a metal-insulator transition at a critical electron density $n_c(0)$, a
The relaxations of conductivity have been studied in a strongly disordered two-dimensional (2D) electron system in Si after excitation far from equilibrium by a rapid change of carrier density n_s at low temperatures T. The dramatic and precise depen
The time-dependent fluctuations of conductivity sigma have been studied in a two-dimensional electron system in low-mobility, small-size Si inversion layers. The noise power spectrum is ~1/f^{alpha} with alpha exhibiting a sharp jump at a certain ele
The relaxations of conductivity after a temporary change of carrier density n_s during the waiting time t_w have been studied in a strongly disordered two-dimensional electron system in Si. At low enough n_s < n_g (n_g - the glass transition density)