ﻻ يوجد ملخص باللغة العربية
We study numerically the glass formation and depinning transition of a system of two-dimensional cluster-forming monodisperse particles in presence of pinning disorder. The pairwise interaction potential is nonmonotonic, and is motivated by the intervortex forces in type-$1.5$ superconductors. Such systems can form cluster glasses due to the intervortex interactions following a thermal quench, without underlying disorder. We study the effects of vortex pinning in these systems. We find that a small density of pinning centers of moderate depth has limited effect on vortex glass formation, i.e., formation of vortex glasses is dominated by intervortex interactions. At higher densities pinning can significantly affect glass formation. The cluster glass depinning, under a constant driving force, is found to be plastic, with features distinct from non-cluster-forming systems such as clusters merging and breaking. We find that in general vortices with cluster-forming interaction forces can exhibit stronger pinning effects than regular vortices.
The relaxations of conductivity have been studied in the glassy regime of a strongly disordered two-dimensional electron system in Si after a temporary change of carrier density during the waiting time t_w. Two types of response have been observed: a
We study the thermodynamic and dynamic phase transitions in two-dimensional polydisperse hard disks using Monte Carlo methods. A conventional local Monte Carlo algorithm allows us to observe a dynamic liquid-glass transition at a density, which depen
Studies of low-frequency resistance noise show that the glassy freezing of the two-dimensional electron system (2DES) in Si in the vicinity of the metal-insulator transition (MIT) persists in parallel magnetic fields B of up to 9 T. At low B, both th
We show that smectic liquid crystals confined in_anisotropic_ porous structures such as e.g.,_strained_ aerogel or aerosil exhibit two new glassy phases. The strain both ensures the stability of these phases and determines their nature. One type of s
The elementary topological T1 process in a two-dimensional foam corresponds to the flip of one soap film with respect to the geometrical constraints. From a mechanical point of view, this T1 process is an elementary relaxation process through which