ﻻ يوجد ملخص باللغة العربية
We investigate sequential tunneling through a multilevel quantum dot confining multiple electrons, in the regime where several channels are available for transport within the bias window. By analyzing solutions to the master equations of the reduced density matrix, we give general conditions on when the presence of a second transport channel in the bias window quenches transport through the quantum dot. These conditions are in terms of distinct tunneling anisotropies which may aid in explaining the occurrence of negative differential conductance in quantum dots in the nonlinear regime.
Gas permeation through nanoscale pores is ubiquitous in nature and plays an important role in a plethora of technologies. Because the pore size is typically smaller than the mean free path of gas molecules, their flow is conventionally described by t
We investigate the current-voltage characteristics of a II-VI semiconductor resonant-tunneling diode coupled to a diluted magnetic semiconductor injector. As a result of an external magnetic field, a giant Zeeman splitting develops in the injector, w
The tunneling current between independently contacted graphene sheets separated by boron nitride insulator is calculated. Both dissipative tunneling transitions, with momentum transfer due to disorder scattering, and non-dissipative regime of tunneli
We investigate interlayer tunneling in heterostructures consisting of two tungsten diselenide (WSe2) monolayers with controlled rotational alignment, and separated by hexagonal boron nitride. In samples where the two WSe2 monolayers are rotationally
We provide a simple set of rules for predicting interference effects in off-resonant transport through single-molecule junctions. These effects fall in two classes, showing respectively an odd or an even number of nodes in the linear conductance with