ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant and non-dissipative tunneling in independently contacted graphene structures

165   0   0.0 ( 0 )
 نشر من قبل Fedir Vasko T
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. T. Vasko




اسأل ChatGPT حول البحث

The tunneling current between independently contacted graphene sheets separated by boron nitride insulator is calculated. Both dissipative tunneling transitions, with momentum transfer due to disorder scattering, and non-dissipative regime of tunneling, which appears due to intersection of electron and hole branches of energy spectrum, are described. Dependencies of tunneling current on concentrations in top and bottom graphene layers, which are governed by the voltages applied through independent contacts and gates, are considered for the back- and double-gated structures. The current-voltage characteristics of the back-gated structure are in agreement with the recent experiment [Science 335, 947 (2012)]. For the double-gated structures, the resonant dissipative tunneling causes a ten times enhancement of response which is important for transistor applications.

قيم البحث

اقرأ أيضاً

We predict that vertical transport in heterostructures formed by twisted graphene layers can exhibit a unique bistability mechanism. Intrinsically bistable $I$-$V$ characteristics arise from resonant tunneling and interlayer charge coupling, enabling multiple stable states in the sequential tunneling regime. We consider a simple trilayer architecture, with the outer layers acting as the source and drain and the middle layer floating. Under bias, the middle layer can be either resonant or non-resonant with the source and drain layers. The bistability is controlled by geometric device parameters easily tunable in experiments. The nanoscale architecture can enable uniquely fast switching times.
We perform {textit ab initio} calculations for the strain-induced formation of non-hexagonal-ring defects in graphene, graphane (planar CH), and graphenol (planar COH). We find that the simplest of such topological defects, the Stone-Wales defect, ac ts as a seed for strain-induced dissociation and multiplication of topological defects. Through the application of inhomogeneous deformations to graphene, graphane and graphenol with initially small concentrations of pentagonal and heptagonal rings, we obtain several novel stable structures that possess, at the same time, large concentrations of non-hexagonal rings (from fourfold to elevenfold) and small formation energies.
Based on the dielectric continuum model, we calculated the phonon assisted tunneling (PAT) current of general double barrier resonant tunneling structures (DBRTSs) including both symmetric and antisymmetric ones. The results indicate that the four hi gher frequency interface phonon modes (especially the one which peaks at either interface of the emitter barrier) dominate the PAT processes, which increase the valley current and decrease the PVR of the DBRTSs. We show that an asymmetric structure can lead to improved performance.
201 - S. Krompiewski 2009
Based on a tight-binding model and a recursive Greens function technique, spin-depentent ballistic transport through tinny graphene sheets (flakes) is studied. The main interest is focussed on: electrical conductivity, giant magnetoresistance (GMR) a nd shot noise. It is shown that when graphene flakes are sandwiched between two ferromagnetic electrodes, the resulting GMR coefficient may be quite significant. This statement holds true both for zigzag and armchair chiralities, as well as for different aspect (width/length) ratios. Remarkably, in absolute values the GMR of the armchair-edge graphene flakes is systematically greater than that corresponding to the zigzag-edge graphene flakes. This finding is attributed to the different degree of conduction channel mixing for the two chiralities in question. It is also shown that for big aspect ratio flakes, 3-dimensional end-contacted leads, very much like invasive contacts, result in non-universal behavior of both conductivity and Fano factor.
We describe a technique to fabricate closely spaced electron-hole bilayers in GaAs-AlGaAs heterostructures. Our technique incorporates a novel method for making shallow contacts to a low density ($<10^{11}cm^{-2}$) 2-dimensional electron gas (2DEG) t hat do not require annealing. Four terminal measurements on both layers (25nm apart) are possible. Measurements show a hole mobility $mu_{h}>10^{5}{rm cm}^{2}{rm V}^{-1}{rm s}^{-1}$ and an electron mobility $mu_{e}>10^{6}{rm cm}^{2}{rm V}^{-1}{rm s}^{-1}$ at 1.5K. Preliminary drag measurements made down to T=300mK indicate an enhancement of coulomb interaction over the values obtained from a static Random Phase Approximation (RPA) calculation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا