ﻻ يوجد ملخص باللغة العربية
We investigate interlayer tunneling in heterostructures consisting of two tungsten diselenide (WSe2) monolayers with controlled rotational alignment, and separated by hexagonal boron nitride. In samples where the two WSe2 monolayers are rotationally aligned we observe resonant tunneling, manifested by a large conductance and negative differential resistance in the vicinity of zero interlayer bias, which stem from energy- and momentum-conserving tunneling. Because the spin-orbit coupling leads to coupled spin-valley degrees of freedom, the twist between the two WSe2 monolayers allows us to probe the conservation of spin-valley degree of freedom in tunneling. In heterostructures where the two WSe2 monolayers have a 180{deg} relative twist, such that the Brillouin zone of one layer is aligned with the time-reversed Brillouin zone of the opposite layer, the resonant tunneling between the layers is suppressed. These findings provide evidence that in addition to momentum, the spin-valley degree of freedom is also conserved in vertical transport.
Large spin-orbital proximity effects have been predicted in graphene interfaced with a transition metal dichalcogenide layer. Whereas clear evidence for an enhanced spin-orbit coupling has been found at large carrier densities, the type of spin-orbit
Valley degree of freedom in the 2D semiconductor is a promising platform for the next generation optoelectronics. Electrons in different valleys can have opposite Berry curvature, leading to the valley Hall effect (VHE). However, VHE without the plas
We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe2. We observe large interlayer current densities of 2 uA/um2 and 2.5 uA/um2, and peak
We study room temperature spin transport in graphene devices encapsulated between a layer-by-layer-stacked two-layer-thick chemical vapour deposition (CVD) grown hexagonal boron nitride (hBN) tunnel barrier, and a few-layer-thick exfoliated-hBN subst
We study proximity-induced spin-orbit coupling (SOC) in bilayer graphene/few-layer WSe2 heterostructure devices. Contact mode atomic force microscopy (AFM) cleaning yields ultra-clean interfaces and high-mobility devices. In a perpendicular magnetic