ترغب بنشر مسار تعليمي؟ اضغط هنا

On the expected number of perfect matchings in cubic planar graphs

86   0   0.0 ( 0 )
 نشر من قبل Cl\\'ement Requil\\'e
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A well-known conjecture by Lovasz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with $n$ vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically $cgamma^n$, where $c>0$ and $gamma sim 1.14196$ is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.

قيم البحث

اقرأ أيضاً

We show that every cubic bridgeless graph with n vertices has at least 3n/4-10 perfect matchings. This is the first bound that differs by more than a constant from the maximal dimension of the perfect matching polytope.
In this paper we further investigate the well-studied problem of finding a perfect matching in a regular bipartite graph. The first non-trivial algorithm, with running time $O(mn)$, dates back to K{o}nigs work in 1916 (here $m=nd$ is the number of ed ges in the graph, $2n$ is the number of vertices, and $d$ is the degree of each node). The currently most efficient algorithm takes time $O(m)$, and is due to Cole, Ost, and Schirra. We improve this running time to $O(min{m, frac{n^{2.5}ln n}{d}})$; this minimum can never be larger than $O(n^{1.75}sqrt{ln n})$. We obtain this improvement by proving a uniform sampling theorem: if we sample each edge in a $d$-regular bipartite graph independently with a probability $p = O(frac{nln n}{d^2})$ then the resulting graph has a perfect matching with high probability. The proof involves a decomposition of the graph into pieces which are guaranteed to have many perfect matchings but do not have any small cuts. We then establish a correspondence between potential witnesses to non-existence of a matching (after sampling) in any piece and cuts of comparable size in that same piece. Kargers sampling theorem for preserving cuts in a graph can now be adapted to prove our uniform sampling theorem for preserving perfect matchings. Using the $O(msqrt{n})$ algorithm (due to Hopcroft and Karp) for finding maximum matchings in bipartite graphs on the sampled graph then yields the stated running time. We also provide an infinite family of instances to show that our uniform sampling result is tight up to poly-logarithmic factors (in fact, up to $ln^2 n$).
Let $D$ be an oriented graph. The inversion of a set $X$ of vertices in $D$ consists in reversing the direction of all arcs with both ends in $X$. The inversion number of $D$, denoted by ${rm inv}(D)$, is the minimum number of
We provide precise asymptotic estimates for the number of several classes of labelled cubic planar graphs, and we analyze properties of such random graphs under the uniform distribution. This model was first analyzed by Bodirsky et al. (Random Struct ures Algorithms 2007). We revisit their work and obtain new results on the enumeration of cubic planar graphs and on random cubic planar graphs. In particular, we determine the exact probability of a random cubic planar graph being connected, and we show that the distribution of the number of triangles in random cubic planar graphs is asymptotically normal with linear expectation and variance. To the best of our knowledge, this is the first time one is able to determine the asymptotic distribution for the number of copies of a fixed graph containing a cycle in classes of random planar graphs arising from planar maps.
325 - Yixin Cao , Shenghua Wang 2021
Inspired by applications of perfect graphs in combinatorial optimization, Chv{a}tal defined t-perfect graphs in 1970s. The long efforts of characterizing t-perfect graphs started immediately, but embarrassingly, even a working conjecture on it is sti ll missing after nearly 50 years. Unlike perfect graphs, t-perfect graphs are not closed under substitution or complementation. A full characterization of t-perfection with respect to substitution has been obtained by Benchetrit in his Ph.D. thesis. Through the present work we attempt to understand t-perfection with respect to complementation. In particular, we show that there are only five pairs of graphs such that both the graphs and their complements are minimally t-imperfect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا