ترغب بنشر مسار تعليمي؟ اضغط هنا

On the surface critical behaviour in Ising strips: density-matrix renormalization-group study

59   0   0.0 ( 0 )
 نشر من قبل Andrzej Drzewinski
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the density-matrix renormalization-group method we study the surface critical behaviour of the magnetization in Ising strips in the subcritical region. Our results support the prediction that the surface magnetization in the two phases along the pseudo-coexistence curve also behaves as for the ordinary transition below the wetting temperature for the finite value of the surface field.

قيم البحث

اقرأ أيضاً

We apply Density Matrix Renormalization Group methods to study the phase diagram of the quantum ANNNI model in the region of low frustration where the ferromagnetic coupling is larger than the next-nearest-neighbor antiferromagnetic one. By Finite Si ze Scaling on lattices with up to 80 sites we locate precisely the transition line from the ferromagnetic phase to a paramagnetic phase without spatial modulation. We then measure and analyze the spin-spin correlation function in order to determine the disorder transition line where a modulation appears. We give strong numerical support to the conjecture that the Peschel-Emery one-dimensional line actually coincides with the disorder line. We also show that the critical exponent governing the vanishing of the modulation parameter at the disorder transition is $beta_q = 1/2$.
We employ an adaptation of a strong-disorder renormalization-group technique in order to analyze the ferro-paramagnetic quantum phase transition of Ising chains with aperiodic but deterministic couplings under the action of a transverse field. In the presence of marginal or relevant geometric fluctuations induced by aperiodicity, for which the critical behavior is expected to depart from the Onsager universality class, we derive analytical and asymptotically exact expressions for various critical exponents (including the correlation-length and the magnetization exponents, which are not easily obtainable by other methods), and shed light onto the nature of the ground state structures in the neighborhood of the critical point. The main results obtained by this approach are confirmed by finite-size scaling analyses of numerical calculations based on the free-fermion method.
The critical behaviour of semi-infinite $d$-dimensional systems with short-range interactions and an O(n) invariant Hamiltonian is investigated at an $m$-axial Lifshitz point with an isotropic wave-vector instability in an $m$-dimensional subspace of $mathbb{R}^d$ parallel to the surface. Continuum $|bphi|^4$ models representing the associated universality classes of surface critical behaviour are constructed. In the boundary parts of their Hamiltonians quadratic derivative terms (involving a dimensionless coupling constant $lambda$) must be included in addition to the familiar ones $proptophi^2$. Beyond one-loop order the infrared-stable fixed points describing the ordinary, special and extraordinary transitions in $d=4+frac{m}{2}-epsilon$ dimensions (with $epsilon>0$) are located at $lambda=lambda^*=Or(epsilon)$. At second order in $epsilon$, the surface critical exponents of both the ordinary and the special transitions start to deviate from their $m=0$ analogues. Results to order $epsilon^2$ are presented for the surface critical exponent $beta_1^{rm ord}$ of the ordinary transition. The scaling dimension of the surface energy density is shown to be given exactly by $d+m (theta-1)$, where $theta= u_{l4}/ u_{l2}$ is the bulk anisotropy exponent.
143 - H. W. Diehl , M. Shpot 2003
We show that the recent renormalization-group analysis of Lifshitz critical behavior presented by Leite [Phys. Rev. B {bf 67}, 104415 (2003)] suffers from a number of severe deficiencies. In particular, we show that his approach does not give an ultr aviolet finite renormalized theory, is plagued by inconsistencies, misses the existence of a nontrivial anisotropy exponent $theta e 1/2$, and therefore yields incorrect hyperscaling relations. His $epsilon$-expansion results to order $epsilon^2$ for the critical exponents of $m$-axial Lifshitz points are incorrect both in the anisotropic ($0<m<d$) and the isotropic cases ($m=d$). The inherent inconsistencies and the lack of a sound basis of the approach makes its results unacceptable even if they are interpreted in the sense of approximations.
We show that the synchronization transition of a large number of noisy coupled oscillators is an example for a dynamic critical point far from thermodynamic equilibrium. The universal behaviors of such critical oscillators, arranged on a lattice in a $d$-dimensional space and coupled by nearest neighbors interactions, can be studied using field theoretical methods. The field theory associated with the critical point of a homogeneous oscillatory instability (or Hopf bifurcation of coupled oscillators) is the complex Ginzburg-Landau equation with additive noise. We perform a perturbative renormalization group (RG) study in a $4-epsilon$ dimensional space. We develop an RG scheme that eliminates the phase and frequency of the oscillations using a scale-dependent oscillating reference frame. Within a Callan-Symanzik RG scheme to two-loop order in perturbation theory, we find that the RG fixed point is formally related to the one of the model $A$ dynamics of the real Ginzburg-Landau theory with an O(2) symmetry of the order parameter. Therefore, the dominant critical exponents for coupled oscillators are the same as for this equilibrium field theory. This formal connection with an equilibrium critical point imposes a relation between the correlation and response functions of coupled oscillators in the critical regime. Since the system operates far from thermodynamic equilibrium, a strong violation of the fluctuation-dissipation relation occurs and is characterized by a universal divergence of an effective temperature. The formal relation between critical oscillators and equilibrium critical points suggests that long-range phase order exists in critical oscillators above two dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا