ﻻ يوجد ملخص باللغة العربية
We show that the recent renormalization-group analysis of Lifshitz critical behavior presented by Leite [Phys. Rev. B {bf 67}, 104415 (2003)] suffers from a number of severe deficiencies. In particular, we show that his approach does not give an ultraviolet finite renormalized theory, is plagued by inconsistencies, misses the existence of a nontrivial anisotropy exponent $theta e 1/2$, and therefore yields incorrect hyperscaling relations. His $epsilon$-expansion results to order $epsilon^2$ for the critical exponents of $m$-axial Lifshitz points are incorrect both in the anisotropic ($0<m<d$) and the isotropic cases ($m=d$). The inherent inconsistencies and the lack of a sound basis of the approach makes its results unacceptable even if they are interpreted in the sense of approximations.
The critical behaviour of semi-infinite $d$-dimensional systems with short-range interactions and an O(n) invariant Hamiltonian is investigated at an $m$-axial Lifshitz point with an isotropic wave-vector instability in an $m$-dimensional subspace of
It is shown that the interface model introduced in Phys. Rev. Lett. 86, 2369 (2001) violates fundamental symmetry requirements for vanishing gravitational acceleration $g$, so that its results cannot be applied to critical properties of interfaces for $gto 0$.
We investigate the critical behavior that d-dimensional systems with short-range forces and a n-component order parameter exhibit at Lifshitz points whose wave-vector instability occurs in a m-dimensional isotropic subspace of ${mathbb R}^d$. Utilizi
An introduction to the theory of critical behavior at Lifshitz points is given, and the recent progress made in applying the field-theoretic renormalization group (RG) approach to $phi^4$ $n$-vector models representing universality classes of $m$-axi
We show that the synchronization transition of a large number of noisy coupled oscillators is an example for a dynamic critical point far from thermodynamic equilibrium. The universal behaviors of such critical oscillators, arranged on a lattice in a