ﻻ يوجد ملخص باللغة العربية
We review results on the scaling of the optimal path length in random networks with weighted links or nodes. In strong disorder we find that the length of the optimal path increases dramatically compared to the known small world result for the minimum distance. For ErdH{o}s-Renyi (ER) and scale free networks (SF), with parameter $lambda$ ($lambda >3$), we find that the small-world nature is destroyed. We also find numerically that for weak disorder the length of the optimal path scales logaritmically with the size of the networks studied. We also review the transition between the strong and weak disorder regimes in the scaling properties of the length of the optimal path for ER and SF networks and for a general distribution of weights, and suggest that for any distribution of weigths, the distribution of optimal path lengths has a universal form which is controlled by the scaling parameter $Z=ell_{infty}/A$ where $A$ plays the role of the disorder strength, and $ell_{infty}$ is the length of the optimal path in strong disorder. The relation for $A$ is derived analytically and supported by numerical simulations. We then study the minimum spanning tree (MST) and show that it is composed of percolation clusters, which we regard as super-nodes, connected by a scale-free tree. We furthermore show that the MST can be partitioned into two distinct components. One component the {it superhighways}, for which the nodes with high centrality dominate, corresponds to the largest cluster at the percolation threshold which is a subset of the MST. In the other component, {it roads}, low centrality nodes dominate. We demonstrate the significance identifying the superhighways by showing that one can improve significantly the global transport by improving a very small fraction of the network.
A complete understanding of real networks requires us to understand the consequences of the uneven interaction strengths between a systems components. Here we use the minimum spanning tree (MST) to explore the effect of weight assignment and network
In this work we study of the dynamics of large size random neural networks. Different methods have been developed to analyse their behavior, most of them rely on heuristic methods based on Gaussian assumptions regarding the fluctuations in the limit
We present two complementary analytical approaches for calculating the distribution of shortest path lengths in Erdos-Renyi networks, based on recursion equations for the shells around a reference node and for the paths originating from it. The resul
Given a compact $E subset mathbb{R}^n$ and $s > 0$, the maximum distance problem seeks a compact and connected subset of $mathbb{R}^n$ of smallest one dimensional Hausdorff measure whose $s$-neighborhood covers $E$. For $Esubset mathbb{R}^2$, we prov
Despite their apparent simplicity, random Boolean networks display a rich variety of dynamical behaviors. Much work has been focused on the properties and abundance of attractors. The topologies of random Boolean networks with one input per node can